期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modeling Study of Seasonal Variation of the Pelagic-Benthic Ecosystem Characteristics of the Bohai Sea 被引量:2
1
作者 ZHANG Xinling WU Zengmao +3 位作者 LI Jie YU Guangyao ZHANG Zhinan GAO Shanhong 《Journal of Ocean University of China》 SCIE CAS 2006年第1期21-28,共8页
Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variati... Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%. 展开更多
关键词 multi-box ecosystem model Bohai Sea pelagic-benthic coupling ecosystem seasonal variation simulation microbial food web impact
下载PDF
Size fraction of phytoplankton and the contribution of natural plankton to the carbon source of Zhikong scallop Chlamys farreri in mariculture ecosystem of the Sanggou Bay 被引量:8
2
作者 JIANG Zengjie DU Meirong +4 位作者 FANG Jinghui GAO Yaping LI Jiaqi ZHAO Li FANG Jianguang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第10期97-105,共9页
The biomass and size fraction of phytoplankton in terms of chlorophyll a(Chl a) was measured during four cruises conducted in April, July, October 2013 and January 2014 in mariculture area, the Sanggou Bay, China.Re... The biomass and size fraction of phytoplankton in terms of chlorophyll a(Chl a) was measured during four cruises conducted in April, July, October 2013 and January 2014 in mariculture area, the Sanggou Bay, China.Results show that total Chl a levels in the surface seawater of the Sanggou Bay generally range from 0.10 to 20.46μg/L, with an average value of 2.13 μg/L. Nano-phytoplankton was the most important size-fraction and accounted for about 65.1% of total Chl a. In order to evaluate the importance of the "protozoan trophic link" for energy transfer from the microbial loop to filter-feeding feeders, Zhikong scallop Chlamys farreri was then offered a natural planktonic community as potential prey. Results show that scallops obtained carbon source from natural plankton with the rate of 11 033.05 μg/(g·d). Protists(nanoflagellates and ciliates) were the dominant source of carbon retained by scallop(48.78%). The microbial loop provided 58.45% of the carbon source for farmed scallops. These results indicate that the microbial loop represent a valuable trophic resource in mariculture system of the Sanggou Bay. 展开更多
关键词 phytoplankton picoplankton protist microbial food web Chlamys farreri
下载PDF
Soil protists: An untapped microbial resource of agriculture and environmental importance 被引量:3
3
作者 Komal A.CHANDARANA Natarajan AMARESAN 《Pedosphere》 SCIE CAS CSCD 2022年第1期184-197,共14页
Protists are essential components of soil biodiversity and ecosystem functioning. They play a vital role in the microbial food web as consumers of bacteria, fungi, and other small eukaryotes and are also involved in m... Protists are essential components of soil biodiversity and ecosystem functioning. They play a vital role in the microbial food web as consumers of bacteria, fungi, and other small eukaryotes and are also involved in maintaining soil fertility and plant productivity. Protists also contribute to regulating and shaping the bacterial community in terrestrial ecosystems via specific prey spectra. They play a role in plant growth promotion and plant health improvement,mostly via nutrient cycling, grazing, and the activation of bacterial genes required for plant growth and phytopathogen suppression. Thus, protists may prove to be a useful inoculant as biofertilizer and biocontrol agent. They can also be applied as model organisms as bioindicators of soil health. Despite their usefulness and essentiality, they are often forgotten and under-researched components of the soil microbiome, as most of our research focuses on bacteria and fungi. In this review, we provide an overview of the role of protists in plant productivity and plant health management and in shifts in soil bacterial community composition, as well as their roles as bioindicator. We also discuss the perspectives of knowledge gaps and future prospects to further improve soil biology.More research in soil protistology will provide insights into sustainable agriculture and environmental health alongside the study of bacteria and fungi. 展开更多
关键词 bacterial community BIOINDICATOR microbial food web plant health plant productivity soil biodiversity soil health soil microbiome
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部