The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph...The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.展开更多
Lateritic soils are frequently utilised in tropical areas of the developing world as an engineering material in the construction of rural earth roads, usually in the form of engineered natural surface (ENS) roads. The...Lateritic soils are frequently utilised in tropical areas of the developing world as an engineering material in the construction of rural earth roads, usually in the form of engineered natural surface (ENS) roads. The heavy, seasonal rainfalls common to the tropics results in ENS roads becoming quickly saturated with rainwater, and no longer accessible to motorised transportation. Microbially induced calcite precipitation (MICP) has been successfully used as a treatment process to decrease the permeability of clean, cohesionless sands by studies trying to impede the movement of groundwater, and any pollutants they may contain. In order to see if MICP treatment can also reduce the susceptibility of ENS road lateritic soils to rainwater saturation, this study has treated a Brazilian sample extracted from an ENS road in Espirito do Santo, Brazil, using the MICP bacterium Sporosarcina pasteurii contained within a urea-calcium chloride solution inoculum. Investigation, by means of a Rowe cell, of the post-treatment permeability, to untreated control samples, has shown an average decrease in the vertical coefficient of permeability of 83%, from 1.15 × 10-7 m/s for the untreated control samples, to 1.92 × 10-8 m/s in treated samples.展开更多
Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess rein...Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess reinforcing method.This study investigated the physical-mechanical properties of MICP-treated loess and then explored the mechanism of loess modification by MICP.Here,loess first underwent MICP treatment,i.e.,mixing loess with Sporosarcina pasteurii and cementation solution(CS).Then,the effects of the CS concentration(0.2,0.6,0.8,and 1 M)on the physical and mechanical properties of the MICP-treated loess were tested.Finally,the static contact angle test,scanning electron microscopy(SEM),and X-ray diffractometry(XRD)were conducted to study the mechanism of MICP treatment on loess.Results showed the following property changes of loess after MICP treatment:the liquid limit decreased by 1.7%,the average particle size increased from 6 to 47μm,the specific gravity decreased from 2.65 to 2.43,the unconfined compressive strength increased from 37 to 71 k Pa,and the disintegration time increased from 10 to 25 min.Besides,the shear strength also increased,and the shear strength parameters(cohesion c and internal friction angle?)varied with the CS concentration.The static contact angle tests indicated that the water absorption ability of loess was reduced after MICP treatment.SEM and XRD results verified that the CaCO_(3)from MICP was attributed to the above results.The above findings explained the mechanism of MICP treatment of loess:the CaCO_(3)coats and cements the particles,and fills the pores of loess,improving the strength and water stability of loess.展开更多
In this study,we carried out a comparative study of two different numerical strategies for the modeling of the biogeochemical processes in microbially induced calcite precipitation(MICP)process.A simplified MICP model...In this study,we carried out a comparative study of two different numerical strategies for the modeling of the biogeochemical processes in microbially induced calcite precipitation(MICP)process.A simplified MICP model was used,which is based on the mass transport theory.Two numerical strategies,namely the operator splitting(OS)and the global implicit(GI)strategies,were adopted to solve the coupled reactive mass transport problems.These two strategies were compared in the aspects of numerical accuracy,convergence property and computational efficiency by solving the presented MICP model.To look more into the details of the model,sensitivity analysis of some important modeling parameters was also carried out in this paper.展开更多
Microbially induced carbonate precipitation(MICP)catalyzed by S.pasteurii has attracted considerable attention as a bio-cement that can both strengthen and seal geomaterials.We investigate the stress sensitivity of pe...Microbially induced carbonate precipitation(MICP)catalyzed by S.pasteurii has attracted considerable attention as a bio-cement that can both strengthen and seal geomaterials.We investigate the stress sensitivity of permeability reduction for the initially high-permeability Berea sandstone(initial permeability∼110 mD)under various durations of MICP-grouting treatment.The results indicate that after 2,4,6,8 and 10 cycles of MICP-grouting,the permeabilities decrease incrementally by 87.9%,60.9%,38.8%,17.3%,and then 5.4%compared to the pre-grouting condition.With increasing the duration of MICP-grouting,the sensitivity of permeability to changes in stress gradually decreases and becomes less hysteretic.This stress sensitivity of permeability is well represented by a power-law relationship with the coefficients representing three contrasting phases:an initial slow reduction,followed by a rapid drop,culminating in an asymptotic response.This variation behavior is closely related to the movement and dislocation of the quartz framework,which is controlled by the intergranular bio-cementation strength.Imaging by scanning electron microscopy(SEM)reveals the evolution of the stress sensitivity to permeability associated with the evolving microstructures after MICP-grouting.The initial precipitates of CaCO3 are dispersed on the surfaces of the quartz framework and occupy the pore space,which is initially limited in controlling and reducing the displacement between particles.As the precipitates continuously accumulate,the intergranular slot-shaped pore spaces are initially bonded by bio-CaCO3,with the bonding strength progressively enhanced with the expanding volume of bio-cementation.At this stage,the intergranular movement and dislocation caused by compaction are reduced,and the stress sensitivity of the permeability is significantly reduced.As these slot-shaped pore spaces are progressively filled by the bio-cement,the movement and dislocation caused by compaction become negligible and thus the stress sensitivity of permeability is minimized.展开更多
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies a...Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens.The present study evaluates the feasibility of microbially induced calcium carbonate precipitation(MICP)technique to mitigate wind-induced erosion of calcareous desert sand(Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36℃ to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina(S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing(in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure(including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope(SEM), and energydispersive X-ray spectroscope(EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust,bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand.展开更多
Microbially induced calcite precipitation(MICP)technique utilizes ureolytic bacteria to decompose urea and generate carbonate ions for metal combination.MICP can remediate heavy metal(e.g.,Cd)contaminated soils while ...Microbially induced calcite precipitation(MICP)technique utilizes ureolytic bacteria to decompose urea and generate carbonate ions for metal combination.MICP can remediate heavy metal(e.g.,Cd)contaminated soils while maintaining or even improving soil functions,but its efficiency in agricultural soil practical application still needs to be enhanced.Here,we constructed a biochar-bacteria(2B)partnership in which biochar provides high nutrition and diverse sorption sites.Using the 2B system,Cd immobilization effectiveness and the underlying mechanism were examined along with the soil properties and soil functions.Results showed that compared to the single biochar and ureolytic bacteria systems,soil Cd mobility was reduced by 23.6%and 45.8%through co-precipitating with CaCO_(3) as otavite(CdCO_(3))in the 2B system,whereas soil fertility,bacterial diversity,and richness increased by 11.7-90.2%,5.4-16.1%,and 6.8-54.7%,respectively.Moreover,the abundances of Proteobacteria and Firmicutes were enhanced in the 2B system.Notably,Sporosarcina and Bacillus(Firmicutes genus)that carry the ureC gene were boosted in the system,further implicating the microbiological mechanism in reducing Cd migration and its bioavailability in soil.Overall,the constructed 2B system was efficient in soil Cd immobilization by strengthening the ureolytic bacteria growth and their nutrient supply in the bacteria-rich soil ecosystem.展开更多
An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the inc...An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the increase of the elastic stiffness,the change of the yield surface due to MICP cementation and the degradation of calcium carbonate bonds during shearing.Specifically,to capture the typical contraction-dilation transition in MICP soils,the original volumetric hardening rule in the MCC model is modified to a combined deviatoric and volumetric hardening rule.The model could reproduce a series of drained triaxial tests on MICP-treated soils with different calcium carbonate contents.Further,we carry out a parametric study and observe numerical instability in some cases.In combination with an analytical analysis,our numerical modelling has identified the benefits and limitations of using MCCbased models in the simulation of MICP-cemented soils,leading to suggestions for further model development.展开更多
基金support from the OpenGeoSys communitypartially funded by the Prime Minister Research Fellowship,Ministry of Education,Government of India with the project number SB21221901CEPMRF008347.
文摘The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.
文摘Lateritic soils are frequently utilised in tropical areas of the developing world as an engineering material in the construction of rural earth roads, usually in the form of engineered natural surface (ENS) roads. The heavy, seasonal rainfalls common to the tropics results in ENS roads becoming quickly saturated with rainwater, and no longer accessible to motorised transportation. Microbially induced calcite precipitation (MICP) has been successfully used as a treatment process to decrease the permeability of clean, cohesionless sands by studies trying to impede the movement of groundwater, and any pollutants they may contain. In order to see if MICP treatment can also reduce the susceptibility of ENS road lateritic soils to rainwater saturation, this study has treated a Brazilian sample extracted from an ENS road in Espirito do Santo, Brazil, using the MICP bacterium Sporosarcina pasteurii contained within a urea-calcium chloride solution inoculum. Investigation, by means of a Rowe cell, of the post-treatment permeability, to untreated control samples, has shown an average decrease in the vertical coefficient of permeability of 83%, from 1.15 × 10-7 m/s for the untreated control samples, to 1.92 × 10-8 m/s in treated samples.
基金funded by the Beijing Natural Science Foundation(No.8214060)the National Natural Science Foundation of China(No.42107164)the 2021 Graduate Innovation Fund Project of China University of Geosciences,Beijing(No.ZD2021YC059)。
文摘Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess reinforcing method.This study investigated the physical-mechanical properties of MICP-treated loess and then explored the mechanism of loess modification by MICP.Here,loess first underwent MICP treatment,i.e.,mixing loess with Sporosarcina pasteurii and cementation solution(CS).Then,the effects of the CS concentration(0.2,0.6,0.8,and 1 M)on the physical and mechanical properties of the MICP-treated loess were tested.Finally,the static contact angle test,scanning electron microscopy(SEM),and X-ray diffractometry(XRD)were conducted to study the mechanism of MICP treatment on loess.Results showed the following property changes of loess after MICP treatment:the liquid limit decreased by 1.7%,the average particle size increased from 6 to 47μm,the specific gravity decreased from 2.65 to 2.43,the unconfined compressive strength increased from 37 to 71 k Pa,and the disintegration time increased from 10 to 25 min.Besides,the shear strength also increased,and the shear strength parameters(cohesion c and internal friction angle?)varied with the CS concentration.The static contact angle tests indicated that the water absorption ability of loess was reduced after MICP treatment.SEM and XRD results verified that the CaCO_(3)from MICP was attributed to the above results.The above findings explained the mechanism of MICP treatment of loess:the CaCO_(3)coats and cements the particles,and fills the pores of loess,improving the strength and water stability of loess.
基金financial support from the German Research Foundation(DFG)(Grant No.NA 330/20-1)the DFG under grant No.FE 1962/1-1(426819984)for financial supportthe Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z019002)。
文摘In this study,we carried out a comparative study of two different numerical strategies for the modeling of the biogeochemical processes in microbially induced calcite precipitation(MICP)process.A simplified MICP model was used,which is based on the mass transport theory.Two numerical strategies,namely the operator splitting(OS)and the global implicit(GI)strategies,were adopted to solve the coupled reactive mass transport problems.These two strategies were compared in the aspects of numerical accuracy,convergence property and computational efficiency by solving the presented MICP model.To look more into the details of the model,sensitivity analysis of some important modeling parameters was also carried out in this paper.
基金funded by the National Natural Science Foundation of China(Grant No.51604051)the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0372).
文摘Microbially induced carbonate precipitation(MICP)catalyzed by S.pasteurii has attracted considerable attention as a bio-cement that can both strengthen and seal geomaterials.We investigate the stress sensitivity of permeability reduction for the initially high-permeability Berea sandstone(initial permeability∼110 mD)under various durations of MICP-grouting treatment.The results indicate that after 2,4,6,8 and 10 cycles of MICP-grouting,the permeabilities decrease incrementally by 87.9%,60.9%,38.8%,17.3%,and then 5.4%compared to the pre-grouting condition.With increasing the duration of MICP-grouting,the sensitivity of permeability to changes in stress gradually decreases and becomes less hysteretic.This stress sensitivity of permeability is well represented by a power-law relationship with the coefficients representing three contrasting phases:an initial slow reduction,followed by a rapid drop,culminating in an asymptotic response.This variation behavior is closely related to the movement and dislocation of the quartz framework,which is controlled by the intergranular bio-cementation strength.Imaging by scanning electron microscopy(SEM)reveals the evolution of the stress sensitivity to permeability associated with the evolving microstructures after MICP-grouting.The initial precipitates of CaCO3 are dispersed on the surfaces of the quartz framework and occupy the pore space,which is initially limited in controlling and reducing the displacement between particles.As the precipitates continuously accumulate,the intergranular slot-shaped pore spaces are initially bonded by bio-CaCO3,with the bonding strength progressively enhanced with the expanding volume of bio-cementation.At this stage,the intergranular movement and dislocation caused by compaction are reduced,and the stress sensitivity of the permeability is significantly reduced.As these slot-shaped pore spaces are progressively filled by the bio-cement,the movement and dislocation caused by compaction become negligible and thus the stress sensitivity of permeability is minimized.
基金Prestige Institute of Engineering, Management, and Research, Indore, India for their supportGuangdong Department of Science and Technology,China for"Overseas Famous Teacher Project"(Grant No.2020A1414010268)。
文摘Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens.The present study evaluates the feasibility of microbially induced calcium carbonate precipitation(MICP)technique to mitigate wind-induced erosion of calcareous desert sand(Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36℃ to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina(S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing(in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure(including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope(SEM), and energydispersive X-ray spectroscope(EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust,bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand.
基金supported by the National Key Research&Development Program of China(no.2016YFC0401904)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(no.51621092)+1 种基金the National Natural Science Foundation of China(nos.51309177 and 51409187)the Program of Introducing Talents of Discipline to Universities(No.B14012)
基金National Natural Science Foundation of China(Grant No.4210070784)Key Program of Chengdu Science and Technology Bureau(Grant Nos.2020-YF09-00023-SN and 2020-YF09-00012-SN).
文摘Microbially induced calcite precipitation(MICP)technique utilizes ureolytic bacteria to decompose urea and generate carbonate ions for metal combination.MICP can remediate heavy metal(e.g.,Cd)contaminated soils while maintaining or even improving soil functions,but its efficiency in agricultural soil practical application still needs to be enhanced.Here,we constructed a biochar-bacteria(2B)partnership in which biochar provides high nutrition and diverse sorption sites.Using the 2B system,Cd immobilization effectiveness and the underlying mechanism were examined along with the soil properties and soil functions.Results showed that compared to the single biochar and ureolytic bacteria systems,soil Cd mobility was reduced by 23.6%and 45.8%through co-precipitating with CaCO_(3) as otavite(CdCO_(3))in the 2B system,whereas soil fertility,bacterial diversity,and richness increased by 11.7-90.2%,5.4-16.1%,and 6.8-54.7%,respectively.Moreover,the abundances of Proteobacteria and Firmicutes were enhanced in the 2B system.Notably,Sporosarcina and Bacillus(Firmicutes genus)that carry the ureC gene were boosted in the system,further implicating the microbiological mechanism in reducing Cd migration and its bioavailability in soil.Overall,the constructed 2B system was efficient in soil Cd immobilization by strengthening the ureolytic bacteria growth and their nutrient supply in the bacteria-rich soil ecosystem.
基金funded by the German Research Foundation(DFG)(Grant No.NA 330/20e1).
文摘An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the increase of the elastic stiffness,the change of the yield surface due to MICP cementation and the degradation of calcium carbonate bonds during shearing.Specifically,to capture the typical contraction-dilation transition in MICP soils,the original volumetric hardening rule in the MCC model is modified to a combined deviatoric and volumetric hardening rule.The model could reproduce a series of drained triaxial tests on MICP-treated soils with different calcium carbonate contents.Further,we carry out a parametric study and observe numerical instability in some cases.In combination with an analytical analysis,our numerical modelling has identified the benefits and limitations of using MCCbased models in the simulation of MICP-cemented soils,leading to suggestions for further model development.