Both preclinical and established rheumatoid arthritis(RA)patients display alterations in the gut microbiome.Prevotella spp.are preferentially enriched in a subset of RA patients.Here,we isolated a Prevotella strain,P....Both preclinical and established rheumatoid arthritis(RA)patients display alterations in the gut microbiome.Prevotella spp.are preferentially enriched in a subset of RA patients.Here,we isolated a Prevotella strain,P.copri RA,from the feces of RA patients and showed that colonization of P.copri RA exacerbated arthritis in a collagen-induced arthritis(CIA)model.With the presence of P.copri RA colonization,a high-fiber diet exacerbated arthritis via microbial alterations and intestinal inflammation.Colonization of P.copri together with a high-fiber diet enabled the digestion of complex fiber,which led to the overproduction of organic acids,including fumarate,succinate and short-chain fatty acids.Succinate promoted proinflammatory responses in macrophages,and supplementation with succinate exacerbated arthritis in the CIA model.Our findings highlight the importance of dysbiosis when evaluating the effects of dietary interventions on RA pathogenesis and provide new insight into dietary interventions or microbiome modifications to improve RA management.展开更多
基金supported by the National Natural Science Foundation of China (81788101,82230060,81630064,and 81701624)the CAMS Innovation Fund for Medical Sciences (CIFMS) (2021-I2M-1-017,2021-I2M-1-047,2021-I2M-1-040,and 2021-I2M-1-016)+1 种基金the Capital’s Funds for Health Improvement and Research (2020-2-4019)the National Key Research and Development Program of China (Grant no.2018YFE0207300).
文摘Both preclinical and established rheumatoid arthritis(RA)patients display alterations in the gut microbiome.Prevotella spp.are preferentially enriched in a subset of RA patients.Here,we isolated a Prevotella strain,P.copri RA,from the feces of RA patients and showed that colonization of P.copri RA exacerbated arthritis in a collagen-induced arthritis(CIA)model.With the presence of P.copri RA colonization,a high-fiber diet exacerbated arthritis via microbial alterations and intestinal inflammation.Colonization of P.copri together with a high-fiber diet enabled the digestion of complex fiber,which led to the overproduction of organic acids,including fumarate,succinate and short-chain fatty acids.Succinate promoted proinflammatory responses in macrophages,and supplementation with succinate exacerbated arthritis in the CIA model.Our findings highlight the importance of dysbiosis when evaluating the effects of dietary interventions on RA pathogenesis and provide new insight into dietary interventions or microbiome modifications to improve RA management.