在话题检测任务中,面对微博这类短文本时,针对SBERT模型的特征提取能力的局限性,以及在聚类阶段,单遍聚类算法存在的小簇问题和效率问题,对两者改进,提出一种基于半监督SBERT与SinglePass(semi-supervised SBERT with SinglePass cluste...在话题检测任务中,面对微博这类短文本时,针对SBERT模型的特征提取能力的局限性,以及在聚类阶段,单遍聚类算法存在的小簇问题和效率问题,对两者改进,提出一种基于半监督SBERT与SinglePass(semi-supervised SBERT with SinglePass clustering,Semi-SBERT-SP)的微博热点话题检测方法,将SBERT模型结合半监督训练,提高其短文本特征提取能力。在聚类阶段过程中引入时间窗口和降维,提高算法效率,增加一个合并层,处理算法产生的小簇。在话题表示层,提出一种融入词热度的词贡献指标,用于提取话题簇中的关键词。实验结果表明,该方法在准确率、F1、互信息3个指标上均优于对比模型或方法,能够有效检测出微博中包含的热点话题。展开更多
微博情感分析是社会媒体挖掘中的重要任务之一,在恐怖组织识别、个性化推荐、舆情分析等方面具有重要的理论和应用价值.但与传统文本数据不同,微博消息短小而凌乱,包含着大量诸如微博表情符号之类的特有信息,同时微博情感是与其讨论主...微博情感分析是社会媒体挖掘中的重要任务之一,在恐怖组织识别、个性化推荐、舆情分析等方面具有重要的理论和应用价值.但与传统文本数据不同,微博消息短小而凌乱,包含着大量诸如微博表情符号之类的特有信息,同时微博情感是与其讨论主题是密切相关的.多数现有的微博情感分析方法都没有将微博主题与微博情感进行协同分析,或者在微博主题情感分析过程中没有考虑将用户关系、用户性格情绪等特征数据,从而导致微博情感分析与主题检测的效果难尽人意.为此,提出了一个基于多特征融合的微博主题情感挖掘模型TSMMF(Topic Sentiment Model based on Multi-feature Fusion),该模型将情感表情符号与微博用户性格情绪特征纳入到图模型LDA中实现微博主题与情感的同步推导.实验结果表明,与当前用于短文本情感主题挖掘的最优模型(JST,SLDA与DPLDA)相比较,TSMMF具有更优的微博主题情感检测性能.展开更多
是在时间维度上对文本进行内容归纳和概要生成的技术。传统的时间线摘要主要研究诸如新闻之类的长文本,而本文研究微博短文本的时间线摘要问题。由于微博短文本内容特征有限,无法仅依靠文本内容生成摘要,本文采用内容覆盖性、时间分布...是在时间维度上对文本进行内容归纳和概要生成的技术。传统的时间线摘要主要研究诸如新闻之类的长文本,而本文研究微博短文本的时间线摘要问题。由于微博短文本内容特征有限,无法仅依靠文本内容生成摘要,本文采用内容覆盖性、时间分布性和传播影响力3种指标评价时间线摘要,并提出了基于滑动窗口的微博时间线摘要算法(Microblog timeline summariaztion based on sliding window,MTSW)。该算法首先利用词项强度和熵来确定代表性词项;然后基于上述3种指标构建出评价时间线摘要的综合评价指标;最后采用滑动窗口的方法,遍历时间轴上的微博消息序列,生成微博时间线摘要。利用真实微博数据集的实验结果表明,MTSW算法生成的时间线摘要可以有效地反映热点事件发展演化的过程。展开更多
文摘在话题检测任务中,面对微博这类短文本时,针对SBERT模型的特征提取能力的局限性,以及在聚类阶段,单遍聚类算法存在的小簇问题和效率问题,对两者改进,提出一种基于半监督SBERT与SinglePass(semi-supervised SBERT with SinglePass clustering,Semi-SBERT-SP)的微博热点话题检测方法,将SBERT模型结合半监督训练,提高其短文本特征提取能力。在聚类阶段过程中引入时间窗口和降维,提高算法效率,增加一个合并层,处理算法产生的小簇。在话题表示层,提出一种融入词热度的词贡献指标,用于提取话题簇中的关键词。实验结果表明,该方法在准确率、F1、互信息3个指标上均优于对比模型或方法,能够有效检测出微博中包含的热点话题。
文摘微博情感分析是社会媒体挖掘中的重要任务之一,在恐怖组织识别、个性化推荐、舆情分析等方面具有重要的理论和应用价值.但与传统文本数据不同,微博消息短小而凌乱,包含着大量诸如微博表情符号之类的特有信息,同时微博情感是与其讨论主题是密切相关的.多数现有的微博情感分析方法都没有将微博主题与微博情感进行协同分析,或者在微博主题情感分析过程中没有考虑将用户关系、用户性格情绪等特征数据,从而导致微博情感分析与主题检测的效果难尽人意.为此,提出了一个基于多特征融合的微博主题情感挖掘模型TSMMF(Topic Sentiment Model based on Multi-feature Fusion),该模型将情感表情符号与微博用户性格情绪特征纳入到图模型LDA中实现微博主题与情感的同步推导.实验结果表明,与当前用于短文本情感主题挖掘的最优模型(JST,SLDA与DPLDA)相比较,TSMMF具有更优的微博主题情感检测性能.
文摘是在时间维度上对文本进行内容归纳和概要生成的技术。传统的时间线摘要主要研究诸如新闻之类的长文本,而本文研究微博短文本的时间线摘要问题。由于微博短文本内容特征有限,无法仅依靠文本内容生成摘要,本文采用内容覆盖性、时间分布性和传播影响力3种指标评价时间线摘要,并提出了基于滑动窗口的微博时间线摘要算法(Microblog timeline summariaztion based on sliding window,MTSW)。该算法首先利用词项强度和熵来确定代表性词项;然后基于上述3种指标构建出评价时间线摘要的综合评价指标;最后采用滑动窗口的方法,遍历时间轴上的微博消息序列,生成微博时间线摘要。利用真实微博数据集的实验结果表明,MTSW算法生成的时间线摘要可以有效地反映热点事件发展演化的过程。