To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometri...To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometrical features high precisely because the parameters of the ball tips are not appropriate. The ball tips with a diameter of less than 100 μm, a sphericity and eccentricity of far less than 1 μm are required urgently. A review on the state-of-the-art of ball tips of micro/nano probing systems is presented. The material characteristics and geometric parameters of now available ball tips are introduced sepa- rately. The existing fabrication methods for the ball tips are demonstrated and summarized. The ball tips' future trends, which are smaller diameter, better sphericity and smaller eccentricity, are proposed in view of the practical requirements of high-precision measurement for micro geometrical features. Some challenges have to be faced in future, such as the promotion and high-precision measurement for the small ball tip's sphericity and eccentricity. Fusion method without the gravity effect when the molten ball tip solidifying is a more suitable way to fabricate a small diameter ball tip together with a shaft.展开更多
There is an increased interest in renewable forms of energy across the world,with solar energy being one of the most promising forms.Over the last couple of years,we have developed the MET(MicroEquipment Technology).A...There is an increased interest in renewable forms of energy across the world,with solar energy being one of the most promising forms.Over the last couple of years,we have developed the MET(MicroEquipment Technology).As an application of the MET,we selected the task of production of solar concentrators.Different types of solar concentrators with flat mirrors were developed and prototypes of these solar concentrators(approximately 1 m in diameter)were made.The proposed solar concentrators were developed on the basis of concentrators patented in Mexico,Spain,and USA.It may be possible to install these concentrators on horizontal roofs of buildings.However,installing them on agricultural fields has become the new trend.As an example,we propose to use them in the potato fields in Canada to obtain dual advantages such as for electrical energy generation and for the minimal loss of agricultural harvest.The second example was analyzed for bean fields,in Mexico.In this paper,we describe the main results in regard to microequipment development for solar concentrator production,several prototypes of solar concentrators with flat mirrors and their co-location and agricultural fields.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51675157,51475131)State Key Laboratory of Precision Measuring Technology and Instruments of China(Grant No.PIL1401)
文摘To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometrical features high precisely because the parameters of the ball tips are not appropriate. The ball tips with a diameter of less than 100 μm, a sphericity and eccentricity of far less than 1 μm are required urgently. A review on the state-of-the-art of ball tips of micro/nano probing systems is presented. The material characteristics and geometric parameters of now available ball tips are introduced sepa- rately. The existing fabrication methods for the ball tips are demonstrated and summarized. The ball tips' future trends, which are smaller diameter, better sphericity and smaller eccentricity, are proposed in view of the practical requirements of high-precision measurement for micro geometrical features. Some challenges have to be faced in future, such as the promotion and high-precision measurement for the small ball tip's sphericity and eccentricity. Fusion method without the gravity effect when the molten ball tip solidifying is a more suitable way to fabricate a small diameter ball tip together with a shaft.
文摘There is an increased interest in renewable forms of energy across the world,with solar energy being one of the most promising forms.Over the last couple of years,we have developed the MET(MicroEquipment Technology).As an application of the MET,we selected the task of production of solar concentrators.Different types of solar concentrators with flat mirrors were developed and prototypes of these solar concentrators(approximately 1 m in diameter)were made.The proposed solar concentrators were developed on the basis of concentrators patented in Mexico,Spain,and USA.It may be possible to install these concentrators on horizontal roofs of buildings.However,installing them on agricultural fields has become the new trend.As an example,we propose to use them in the potato fields in Canada to obtain dual advantages such as for electrical energy generation and for the minimal loss of agricultural harvest.The second example was analyzed for bean fields,in Mexico.In this paper,we describe the main results in regard to microequipment development for solar concentrator production,several prototypes of solar concentrators with flat mirrors and their co-location and agricultural fields.