Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to ...Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.展开更多
this paper describes the design of a feedback testing system for locomtive tractionmotor. The structures and features of the software and hardware of themicrocomputer control system have been studied. This testing sys...this paper describes the design of a feedback testing system for locomtive tractionmotor. The structures and features of the software and hardware of themicrocomputer control system have been studied. This testing system hasalready been put into operation successfully in several locomotive depots inChina.展开更多
A microcomputer control system based on 80C320 and a switching regulation of wire feeder were designed. A correction factor based double model fuzzy logic controller (FLC) was introduced to achieve welding digital a...A microcomputer control system based on 80C320 and a switching regulation of wire feeder were designed. A correction factor based double model fuzzy logic controller (FLC) was introduced to achieve welding digital and intellectualized control by means of wire feeding speed feedback. The controller has many functions such as keyboard input, light emitting diode (LED) display and real-time intellectualized control of welding process etc. The controlling performance influenced by the coefficient of correction function was discussed. It was concluded by the experiments the relation between the coefficient of correction function and welding quality, when the coefficient of correction function is great, the dynamic character of controller is better, when the coefficient of correction function is small, the sensitivity character of controller is better. Experimental results also show that digital and fuzzy logic control method enable the improvement of appearance of weld and stability of welding process to be achieved in submerged arc automatic welding.展开更多
in order to study non-indutive plasma current production, the lower hybrid current drive(LHCD) experiment on the HL-2A tokamak is carried out. Simultaneously a microcomputer has been used to control the whole LHCD s...in order to study non-indutive plasma current production, the lower hybrid current drive(LHCD) experiment on the HL-2A tokamak is carried out. Simultaneously a microcomputer has been used to control the whole LHCD system. During the experiment this year, we can monitor and protect the LHCD system by use of the microcomputer control system, which will imediately switch off the microwave power to be launched into the tokamak if the plasma is disrupted. All this ensure that the microwave is injected into the equipment correctly.展开更多
基金The Project Supported by Doctoral Programme Foundation of Institution of Higher Education
文摘Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.
文摘this paper describes the design of a feedback testing system for locomtive tractionmotor. The structures and features of the software and hardware of themicrocomputer control system have been studied. This testing system hasalready been put into operation successfully in several locomotive depots inChina.
基金the National Natural Science Foundation of China under Grant no50575074
文摘A microcomputer control system based on 80C320 and a switching regulation of wire feeder were designed. A correction factor based double model fuzzy logic controller (FLC) was introduced to achieve welding digital and intellectualized control by means of wire feeding speed feedback. The controller has many functions such as keyboard input, light emitting diode (LED) display and real-time intellectualized control of welding process etc. The controlling performance influenced by the coefficient of correction function was discussed. It was concluded by the experiments the relation between the coefficient of correction function and welding quality, when the coefficient of correction function is great, the dynamic character of controller is better, when the coefficient of correction function is small, the sensitivity character of controller is better. Experimental results also show that digital and fuzzy logic control method enable the improvement of appearance of weld and stability of welding process to be achieved in submerged arc automatic welding.
文摘in order to study non-indutive plasma current production, the lower hybrid current drive(LHCD) experiment on the HL-2A tokamak is carried out. Simultaneously a microcomputer has been used to control the whole LHCD system. During the experiment this year, we can monitor and protect the LHCD system by use of the microcomputer control system, which will imediately switch off the microwave power to be launched into the tokamak if the plasma is disrupted. All this ensure that the microwave is injected into the equipment correctly.