The ruthenium multi-substituted polyoxotungstate,K_7[Si W_(9)O_(37)Ru_(4)(H_(2)O)_(3)Cl_(3)]·15H_(2)O(S1),was synthesized by a conventional aqueous solution containing the trilacunary Keggin-anionsβ-Na_(9)HSi W_...The ruthenium multi-substituted polyoxotungstate,K_7[Si W_(9)O_(37)Ru_(4)(H_(2)O)_(3)Cl_(3)]·15H_(2)O(S1),was synthesized by a conventional aqueous solution containing the trilacunary Keggin-anionsβ-Na_(9)HSi W_(9)O_(34)·12H_(2)O(S2)and Ru Cl_(3)·n H_(2)O(S3).Compound S1 was charac‐terized by elemental analysis,energy-dispersive X-ray spectroscopy(EDS),thermogravimetric analysis(TG),infrared spectroscopy(IR),uliraviolet visible absorption spectroscopy(UV/Vis)and X-ray photoelectron spectroscopy(XPS).The cytotoxicitycy of S1 was tested in C33A(human cervical cancer),DLD-1(human colon cancer),Hep G2(human liver cancer)and human normal embryonic lung fibroblasts cell(MRC-5).And the viability of these treated cells was evaluated by MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro‐mide)assay.To explore the mode of cell death induced by S1,morphological study of DNA damage and apoptosis assays were conducted.These analyses revealed that S1 exerted its cytotoxic effect in a dose-dependent manner,primarily triggering apoptotic cell death.Cell cycle analysis by flow cytometry indicated that compound S1 caused cell cycle arrest and accumulated cells in S phase.展开更多
Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition ...Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition of tumor cells and spheroids were assessed using MTT and 3D culture assays.Quantitative real-time PCR and Western blot analyses were employed to investigate the changes in mRNA and protein expression levels of molecules related to cell cycle and apoptosis.Results:Hydrangea serrata extract effectively inhibited the growth of both tumor cells and spheroids.The extract also significantly upregulated p27 mRNA expression and downregulated CDK2 mRNA expression,leading to cell cycle arrest.Moreover,increased BAX/Bcl-2 ratio as well as caspase-9 and-3 were observed after treatment with Hydrangea serrata extract,indicating the induction of tumor cell apoptosis.Conclusions:Hydrangea serrata extract has the potential to alleviate tumors by effectively modulating cell-cycle-related gene expressions and inducing apoptosis,thereby inhibiting tumor growth.展开更多
Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential ...Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential target is cell division cycle 20(CDC20),which has been implicated in oncogenesis.This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved.Methods The effects of Apcin on EC cell proliferation,apoptosis,and the cell cycle were evaluated using CCK8 assays and flow cytometry.RNA sequencing(RNA-seq)was subsequently conducted to explore the underlying molecular mechanism,and Western blotting and coimmunoprecipitation were subsequently performed to validate the results.Animal studies were performed to evaluate the antitumor effects in vivo.Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC.Results Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells,resulting in cell cycle arrest.Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin.Notably,Apcin treatment led to the upregulation of the cell cycle regulator p21,which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells.In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth.Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue,and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval.Conclusion CDC20 is a novel molecular target in EC,and Apcin could be developed as a candidate antitumor drug for EC treatment.展开更多
Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate...Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC.展开更多
Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is...Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is typically accompanied by a poor prognosis.Exploring the synergistic potential of combining multiple chemotherapeutic agents may represent a promising avenue for optimizing treatment efficacy.Methods:This study investigated whether 3-Methyladenine(3-MA)could potentiated the effect of PTX and its potential molecular mechanism.Samples were divided into the following categories:Negative control(NC)with the solvent dimethyl sulfoxide(DMSO,0.5%v/v),PTX(400 nM),3-MA(4 mM),and PTX(400 nM)+3-MA(4 mM).The viability of NPC cells was assessed using both the cell counting kit-8(CCK-8)assay and the colony formation assay.Microscopic observation was performed to identify morphological cell changes.Flow cytometry was used to assess cell cycle status,mitochondrial membrane potential(MMP),and apoptotic cells.Western blotting was conducted to quantify the protein expression.Results:3-MA enhanced PTX-specific inhibition of NPC cell proliferation.PTX,either alone or in combination with 3-MA,caused cell cycle halt at the G2/M phase in the majority of NPC cells,and the combination treatment of PTX with 3-MA induced a higher rate of NPC cell death compared to PTX alone.Western blotting results revealed the combination of PTX with 3-MA heightened activation of cyclin-dependent kinase 1(CDK1),a key molecule in shifting cells from mitotic arrest to apoptosis,led to a reduction in Myeloid Cell Leukemia 1(MCL-1)expression and an increase in Poly(ADP-ribose)polymerase(PARP)cleavage.Conclusion:The concurrent administration of PTX with 3-MA effectively enhances PTX’s inhibitory impact on NPC and activates the apoptosis signal regulated by CDK1.展开更多
Polyphenol-rich foods have been shown to be good for cancer prevention as powerful antioxidants. In this study, the mechanisms of wild pink bayberry free phenolic extract(WPBFE)inhibiting the proliferation and inducin...Polyphenol-rich foods have been shown to be good for cancer prevention as powerful antioxidants. In this study, the mechanisms of wild pink bayberry free phenolic extract(WPBFE)inhibiting the proliferation and inducing apoptotic of MDA-MB-231 breast cancer cells was examined. The main phenolic acids and flavonols in WPBFE were gallic acid((18.83 ± 0.44)μg/g FW)and myricetin((1.52 ± 0.05)μg/g FW), respectively. The maximum inhibition rate of WPBFE at non-cytotoxicity dose(below 80 mg/mL)was 81%. Western blotting analysis showed that WPBFE could cause the arrest of cell cycle in G0/G1 phase by down-regulating expression levels of PCNA, CDK4, cyclin D1 and up-regulating the expression level of p21. Meanwhile, WPBFE induced apoptosis through initiating the mitochondrial death pathway by up-regulating cleaved caspase-3 and enhancing the ratio of Bax/Bcl-2, with the maximum expression levels of 1.29 and 2.03 folds that of control group, respectively. Further study of the upstream protein, we found that WPBFE down-regulated TRAF2, while upregulated p-ASK1, p-p38 and p-p53. Furthermore, WPBFE could down-regulate the expression of p-PI3K and p-Akt. These observations indicated that WPBFE might play an anticancer role through regulating the p38 MAPK together with PI3K/Akt pathway.展开更多
Objective:To investigate the potential synergistic activity of diclofenac with piperine and D-limonene in inducing apoptosis and cell cycle arrest in breast cancer MCF-7 cells.Methods:Molecular docking study was condu...Objective:To investigate the potential synergistic activity of diclofenac with piperine and D-limonene in inducing apoptosis and cell cycle arrest in breast cancer MCF-7 cells.Methods:Molecular docking study was conducted to evaluate the binding affinity of diclofenac with piperine and D-limonene against p53,Bax,and Bcl-2.The MTT assay was used to determine IC50,and the Chou-Talay method was used to determine the synergistic concentration of the combination treatment of diclofenac plus piperine and diclofenac plus D-limonene.Apoptosis detection,cell cycle arrest,reactive oxygen species production,and mitochondrial membrane potential were also investigated.Results:Diclofenac,piperine,and D-limonene showed potent binding affinity for p53,Bax,and Bcl-2.Diclofenac plus piperine and diclofenac plus D-limonene enhanced the formation of reactive oxygen species,which also had an effect on the mitochondrial membrane’s integrity and caused DNA fragmentation.Diclofenac plus piperine and diclofenac plus D-limonene arrested the cells in the sub-G0phase while drastically lowering the percentage of cells in the G2/M phase.Furthermore,the elevated apoptosis in the combined therapy was confirmed by annexin V/propidium iodide staining.Conclusions:The combined therapy prominently enhanced the antiproliferative and apoptotic effects on MCF-7 cells compared with treatment with diclofenac,piperine,and D-limonene alone.展开更多
Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed t...Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.展开更多
BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis...BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis,cell cycle regulation,prolifera-tion,and survival.Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma(HCC).However,the role of PHB1 in HCC is controversial.AIM To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro.METHODS HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria;then,PHB1 levels in the sera and liver tissues of these participates were determined using ELISA,RT-PCR,and immunohistoche-mistry.Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA(shRNA-PHB1)for 24-72 h.Cell prolif-eration was analysed with an MTT assay.Cell cycle progression and apoptosis were analysed using flow cytometry(FACS).The mRNA and protein expression levels of the cell cycle-related molecules p21,Cyclin A2,Cyclin E1,and CDK2 and the cell apoptosis-related molecules cytochrome C(Cyt C),p53,Bcl-2,Bax,caspase 3,and caspase 9 were measured by real-time PCR and Western blot,respectively.RESULTS Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals,and decreased PHB1 was positively correlated with low differentiation,TNM stage III-IV,and alpha-fetoprotein≥400μg/L.Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner.FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis.The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells.The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41%±1.06%,which was significantly greater than that of apoptotic control cells(3.65%±0.85%,P<0.01)and empty vector-transfected cells(4.21%±0.52%,P<0.01).Similar results were obtained with SMMC-7721 cells.Furthermore,the mRNA and protein expression levels of p53,p21,Bax,caspase 3,and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2,Cy-clin E1,CDK2,and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells.However,when PHB1 was upregulated in human HCC cells,Cyt C expression levels were increased in the cytosol and decreased in the mitochondria,which indicated that Cyt C had been released into the cytosol.Conversely,these effects were reversed when PHB1 was knocked down.CONCLUSION PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.展开更多
Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of ...Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of its anticancer action. Methods The MTT method was used to investigate the inhibitory effect of oridonin on BGC-823 cells. The apoptosis-induction effect was evaluated by confocal laser microscopy and flow cytometry. The change of mitochondrial membrane potential and the increase of intracellular Ca^2+ were assessed by fluorescence probe rhodamine123 and Fluo 3-AM, respectively, with flow cytometry. The expression of apoptosis and cell cycle related proteins was studied using western blotting. Results Oridonin inhibited BGC-823 cells growth with IC50 of 22.21 p, mol.L^-1. It induced apoptosis in a dose-dependent manner. In addition, it decreased mitochondria membrane potential, increased intracellular Ca^2+, and activated pro-caspase 3. BGC-823 cells were arrested in G2/M cell cycle phase with lower expression of cyclin A protein. The up-regulation of p53 was observed before apoptosis and cell cycle arrest occurred. Conclusion Oridonin inhibits the proliferation of BGC-823 cells through G2/M cell cycle arrest and apoptosis induction, which is mediated by influx of Ca^2+, up-regulation of p53, activation of caspase-3, and down-regulation of cyclin A.展开更多
To study the effects of low dose radiation (LDR) on tumor apoptosis, cellcycle progression and changes of apoptosis-related protein Bcl-2 in tumor-bearing mice. Methods:Male mice of Kunming strain were implanted subcu...To study the effects of low dose radiation (LDR) on tumor apoptosis, cellcycle progression and changes of apoptosis-related protein Bcl-2 in tumor-bearing mice. Methods:Male mice of Kunming strain were implanted subcutaneously with S180 sarcoma cells in the left inguenas an in situ experimental animal model. Seven days later, the mice were subjected to 75 mGywhole-body γ-irradiation. At 24 and 48 h after the irradiation, all mice were sacrificed. The tumorsizes were measured, and tumor cell apoptosis and cell cycle progression were analyzed by flowcytometry. The expression of apoptosis-related protein Bcl-2 and the apoptotic rate of tumor cellswere observed by immunohistochemistry and electron microscopy. Results: Tumors grew significantlyslower after LDR (P 【 0.05). The tumor cells were arrested in G1 phrase and the expression of Bcl-2protein decreased at 24 h. Apoptotic rate of tumor cells was increased significantly at 48 h afterLDR (P 【 0.01). Conclusion: LDR could cause a G1-phase arrest and increase the apoptosis of tumorcells through the low level of apoptosis-related protein bcl-2 in the tumor-bearing mice. Theorganized immune function and anti-tumor ability are markedly increased after LDR. Our studyprovides practical evidence of clinical application to cancer treatment.展开更多
AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action. METHODS: The in vitro cytotoxic techniques were com...AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action. METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub431 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting. RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-Go cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-Go cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca^2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis. CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis.展开更多
AIM We have previously reported that inducible over-expresaion of Bak may prolong cell cycle in G1 phase and lead to apoptosis in HCC-9204 cells. This study is to investigate whether p27KIP1 plays an important role in...AIM We have previously reported that inducible over-expresaion of Bak may prolong cell cycle in G1 phase and lead to apoptosis in HCC-9204 cells. This study is to investigate whether p27KIP1 plays an important role in this process. MEHODS In order to elucidate the exact function of p27KIP1 in this process, a zinc inducible p27KIP1 stable transfectant and transient p27KIP1- GFP fusion transfectant were constructed. The effects of inducible p27KIP1 on cell growth, cell cycle arrest and apoptosis were examined in the mock, control pMD vector, and pMD-KIP1 transfected HCC-9204 cells. RESULTS This p27KIP1-GFP transfectant may transiently express the fusion gene. The cell growth was reduced by 35% at 48 h of p27KIP1 induction with zinc treatment as determined by trypan blue exclusion assay. These differences remained the same after 72 h of p27KIP1 expression, p27KIP1 caused cell cycle arrest after 24 h of induction, with 40% increase in G1 population. Prolonged p27KIP1 expression in this cell line induced apoptotic cell death reflected by TUNEL assay. Fourty-eight h and 72 h of p27KIP1 expression showed a characteristic DNA ladder on agarose gel electrophoresis.展开更多
BACKGROUND: Gallbladder carcinoma, a lethal malignant neoplasm with poor prognosis, has dismal results of surgical resection and chemoradiotherapy. We previously reported that norcantharidin (NCTD) is useful against g...BACKGROUND: Gallbladder carcinoma, a lethal malignant neoplasm with poor prognosis, has dismal results of surgical resection and chemoradiotherapy. We previously reported that norcantharidin (NCTD) is useful against growth, proliferation, and invasion of human gallbladder carcinoma GBC-SD cells in vitro. In this study, we further studied the inhibitory effect of NCTD on the growth of xenografted tumors of human gallbladder carcinoma in nude mice in vivo and the underlying mechanisms. METHODS: The tumor xenograft model of human gallbladder carcinoma in nude mice in vivo was established with subcutaneous GBC-SD cells. The experimental mice were randomly divided into control, 5-FU, NCTD, and NCTD+5-FU groups which were given different treatments. Tumor growth in terms of size, growth curve, and inhibitory rate was evaluated. Cell cycle, apoptosis, and morphological changes of the xenografted tumors were assessed by flow cytometry and light/electron microscopy. The expression of the cell cycle-related proteins cyclin-D1 and p27 as well as the apoptosis-related proteins Bcl-2, Box, and survivin were determined by the streptavidin-biotin complex (SABC) method and RT-PCR. RESULTS: NCTD inhibited the growth of the xenografted tumors in a dose- and time-dependent manner. Tumor volume decreased (5.61+/-0.39 vs. 9.78+/-0.61 cm(3), P=0.000) with an increased tumor inhibitory rate (42.63% vs. 0%, P=0.012) in the NTCD group compared with the control group. The apoptosis rate increased (15.08+/-1.49% vs. 5.49+/-0.59%, P=0.0001) along with a decreased percentage of cells in S phase (43.47+/-2.83% vs. 69.85+/-1.96%, P=0.0001) in the NTCD group compared with the control group. The morphological changes of apoptosis such as nuclear shrinkage, chromatin aggregation, chromosome condensation, and typical apoptosis bodies in the xenografted tumor cells induced by NCTD were observed by light and electron microscopy. The expression of cyclin-D1, Bcl-2 and survivin proteins/mRNAs decreased significantly, with increased expression of p27 and Bax proteins/mRNAs in the NCTD group compared with the control group. CONCLUSION: NCTD inhibits the growth of xenografted tumors of human gallbladder carcinoma in nude mice by inducing apoptosis and blocking the cell cycle in vivo.展开更多
Recent studies indicate that cell-cycle checkpoints are tightly correlated with the regulation of apoptosis, in which p53 plays an important role. Our present works show that the expression of E6/E7 oncogenes of human...Recent studies indicate that cell-cycle checkpoints are tightly correlated with the regulation of apoptosis, in which p53 plays an important role. Our present works show that the expression of E6/E7 oncogenes of human papillomavirus in HeLa cells is inhibited in the presence of anti-tumor reagent tripchlorolide (TC), which results in the up-regulation of p53 in HeLa cells. Interestingly, under the same TC-treatment, the cells at the early S-phase are more susceptible to apoptosis than those at the middle S-phase although p53 protein is stabilized to the same level in both situations. Significant difference is exhibited between the two specified expression profiles. Further analysis demonstrates that anti-apoptotic gene survivin is up-regulated by p53 in the TC-treated middle-S cells, whereas it is down-regulated by p53 in the TC-treated early-S cells. Taken together, the present study indicates that the differential p53-regulated expres- sion of survivin at different stages of the cell cycle results in different cellular outputs under the same apoptosis-inducer.展开更多
Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri(L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer...Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri(L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.展开更多
AIM: To study the effect of fluoride on oxidative stress, DNA damage and apoptosis as well as cell cycle of rat oral mucosal cells and hepatocytes.METHODS: Ten male SD rats weighing 80N120 g were randomly divided in...AIM: To study the effect of fluoride on oxidative stress, DNA damage and apoptosis as well as cell cycle of rat oral mucosal cells and hepatocytes.METHODS: Ten male SD rats weighing 80N120 g were randomly divided into control group and fluoride group, 5 animals each group. The animals in fluoride group had free access to deionized water containing 150 mg/L sodium fluoride (NaF). The animals in control group were given distilled water. Four weeks later, the animals were killed. Reactive oxygen species (ROS) in oral mucosa and liver were measured by Fenton reaction, lipid peroxidation product, malondialdehyde (MDA), was detected by thiobarbituric acid (TBA) reaction, reduced glutathione (GSH) was assayed by dithionitrobenzoic acid (DTNB) reaction. DNA damage in oral mucosal cells and hepatocytes was determined by single cell gel (SCG) electrophoresis or comet assay. Apoptosis and cell cycle in oral mucosal cells and hepatocytes were detected by flow cytometry.RESULTS: The contents of ROS and MDA in oral mucosa and liver tissue of fluoride group were significantly higher than those of control group (P〈 0.01), but the level of GSH was markedly decreased (P〈 0.01). The contents of ROS, MDA and GSH were (134.73 + 12.63) U/mg protein, (1.48 + 0.13) mmol/mg protein and (76.38 ~ 6.71) mmol/ mg protein in oral mucosa respectively, and (143.45+ 11.76) U/mg protein, (1.44:1:0.12) mmol/mg protein and (78.83±7.72) mmol/mg protein in liver tissue respectively. The DNA damage rate in fluoride group was 50.20% in oral mucosal cells and 44.80% in hepatocytes, higher than those in the control group (P 〈0.01). The apop- tosis rate in oral mucosal cells was (13.63 + 1.81) % in fluoride group, and (t2.76+ 1.67) % in hepatocytes, higher than those in control group. Excess fluoride could differently lower the number of oral mucosal cells and hepatocytes at G0/G1 and S G2/M phases (P〈 0.05).CONCLUSION: Excess fluoride can induce oxidative stress and DNA damage and lead to apoptosis and cell cycle change in rat oral mucosal cells and hepatocytes.展开更多
Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase ...Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senes- cence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving “sensor” proteins that sense the damage, and transmit signals to “transducer” proteins, which, in turn, convey the signals to numerous “effector” proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.展开更多
AIM: To study the in vitro and in vivo inhibitory effects of genistein on invasive potential of Bel 7402 hepatocellular carcinoma (HCC) cells and to explore the underlying mechanism. METHODS: Bel 7402 HCC cells we...AIM: To study the in vitro and in vivo inhibitory effects of genistein on invasive potential of Bel 7402 hepatocellular carcinoma (HCC) cells and to explore the underlying mechanism. METHODS: Bel 7402 HCC cells were exposed to genistein. The invasive activity of tumor cells was assayed in transwell cell culture chamber, p125^FAK expression and cell cycle were evaluated by a functional assay. Cell apoptosis analysis was performed with TUNEL method. In addition, bilateral subrenal capsule xenograft transplantation of HCC was performed in 10 nude mice. Genistein was injected and the invasion of HCC into the renal parenchyma was observed. Nicrovessels with immunohistochemical staining were detected. RESULTS: Genistein significantly inhibited the growth of Bel 7402 cells, the inhibitory rate of tumor cells was 26 -42%. The invasive potential of Bel 7402 cells in vitro was significantly inhibited, the inhibitory rate was 11- 28%. Genistein caused G2/M cell cycle arrest, S phase decreased significantly. The occurrence of apoptosis in genistein group increased significantly. The expression of p125^FAK in 5 μg/mL genistein group (15.26±0.16%) and 10 μg/mL genistein group (12.89±0.36%) was significantly lower than that in the control group (19.75± 1.12%, P〈0.05). Tumor growth in genistein-treated nude mice was significantly retarded in comparison to control mice, the inhibitory rate of tumor growth was about 20%. Genistein also significantly inhibited the invasion of Bel 7402 cells into the renal parenchyma of nude mice with xenograft transplant. The positive unit value of microvessels in genistein-treated group (10.422 ±0.807) was significantly lower than that in control group (22.330 ± 5.696, P〈 0.01). CONCLUSION: Genistein can effectively inhibit the invasive potential of Bel 7402 HCC cells by altering cell cycle, apoptosis and angiogenesis, inhibition of focal adhesion kinase may play a significant role in this process.展开更多
Background: The objectives of this study were to characterize changes in the relative m RNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal...Background: The objectives of this study were to characterize changes in the relative m RNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal epithelium(RE) of sheep during high-grain(HG) diet adaptation.Results: Twenty sheep were assigned to four groups with five animals each. These animals were assigned to different periods of HG diet(containing 40% forage and 60% concentrate mix) feeding. The HG groups received an HG diet for7(G7, n = 5), 14(G14, n = 5) and 28 d(G28, n = 5), respectively. In contrast, the control group(CON, n = 5) was fed the forage-based diet for 28 d. The results showed that HG feeding linearly decreased(P < 0.001) the ruminal p H, and increased the concentrations of ruminal total volatile fatty acid(linear, P = 0.001), butyrate(linear, P < 0.001), valerate(quadratic P = 0.029) and the level of IGF-1(quadratic, P = 0.043) in plasma. The length(quadratic, P = 0.004), width(cubic, P = 0.015) and surface of the ruminal papillae(linear, P = 0.003) were all enlarged after 14 d of HG diet feeding.HG feeding cubically increased the number of cell layers forming the stratum corneum(SC, P < 0.001) and the thickness of the SC(P < 0.001) and stratum basale(P < 0.001). The proportion of basal layer cells in the RE decreased(linear, P < 0.001) in the G0/G1-phase, but it increased linearly(P = 0.006) in the S-phase and cubically(P = 0.004) in the G2/M-phases. The proportion of apoptosis cells in G7, G14 and G28 was reduced compared to the CON(quadratic, P <0.001). HG diet feeding linearly decreased the m RNA expression of Cyclin E1(P = 0.021) and CDK-2(P = 0.001) and(P = 0.027) the protein expression of Cyclin E1. Feeding an HG diet linearly increased the m RNA expression of genes IGFBP-2(P = 0.034) and IGFBP 5(P < 0.009), while linearly decreasing(P < 0.001) the IGFBP 3 expression. The expression of cell apoptosis gene Caspase 8 decreased(quadratic, P = 0.012), while Bad m RNA expression tended to decrease(cubic, P = 0.053) after HG feeding.Conclusions: These results demonstrated sequential changes in rumen papillae size, cell cycle regulation and the genes involved in proliferation and apoptosis as time elapsed in feeding a high-grain diet to sheep.展开更多
基金Supported by the National Natural Science Foundation of China (21701120)the Science and Technology Innovation Project of Colleges and Universities in Shanxi Province (2020L0334)the Innovation and Entrepreneurship Training Program for College Students in Shanxi Province(20240778)。
文摘The ruthenium multi-substituted polyoxotungstate,K_7[Si W_(9)O_(37)Ru_(4)(H_(2)O)_(3)Cl_(3)]·15H_(2)O(S1),was synthesized by a conventional aqueous solution containing the trilacunary Keggin-anionsβ-Na_(9)HSi W_(9)O_(34)·12H_(2)O(S2)and Ru Cl_(3)·n H_(2)O(S3).Compound S1 was charac‐terized by elemental analysis,energy-dispersive X-ray spectroscopy(EDS),thermogravimetric analysis(TG),infrared spectroscopy(IR),uliraviolet visible absorption spectroscopy(UV/Vis)and X-ray photoelectron spectroscopy(XPS).The cytotoxicitycy of S1 was tested in C33A(human cervical cancer),DLD-1(human colon cancer),Hep G2(human liver cancer)and human normal embryonic lung fibroblasts cell(MRC-5).And the viability of these treated cells was evaluated by MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro‐mide)assay.To explore the mode of cell death induced by S1,morphological study of DNA damage and apoptosis assays were conducted.These analyses revealed that S1 exerted its cytotoxic effect in a dose-dependent manner,primarily triggering apoptotic cell death.Cell cycle analysis by flow cytometry indicated that compound S1 caused cell cycle arrest and accumulated cells in S phase.
基金funded by the GRRC Program of Gyeonggi province[GRRC-KyungHee2023(B01)],Republic of Korea.
文摘Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition of tumor cells and spheroids were assessed using MTT and 3D culture assays.Quantitative real-time PCR and Western blot analyses were employed to investigate the changes in mRNA and protein expression levels of molecules related to cell cycle and apoptosis.Results:Hydrangea serrata extract effectively inhibited the growth of both tumor cells and spheroids.The extract also significantly upregulated p27 mRNA expression and downregulated CDK2 mRNA expression,leading to cell cycle arrest.Moreover,increased BAX/Bcl-2 ratio as well as caspase-9 and-3 were observed after treatment with Hydrangea serrata extract,indicating the induction of tumor cell apoptosis.Conclusions:Hydrangea serrata extract has the potential to alleviate tumors by effectively modulating cell-cycle-related gene expressions and inducing apoptosis,thereby inhibiting tumor growth.
文摘Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential target is cell division cycle 20(CDC20),which has been implicated in oncogenesis.This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved.Methods The effects of Apcin on EC cell proliferation,apoptosis,and the cell cycle were evaluated using CCK8 assays and flow cytometry.RNA sequencing(RNA-seq)was subsequently conducted to explore the underlying molecular mechanism,and Western blotting and coimmunoprecipitation were subsequently performed to validate the results.Animal studies were performed to evaluate the antitumor effects in vivo.Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC.Results Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells,resulting in cell cycle arrest.Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin.Notably,Apcin treatment led to the upregulation of the cell cycle regulator p21,which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells.In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth.Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue,and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval.Conclusion CDC20 is a novel molecular target in EC,and Apcin could be developed as a candidate antitumor drug for EC treatment.
基金This work was supported by grants from the National Natural Science Foundation of China(52072005 and 51872279).
文摘Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC.
基金supported by the Science and Technology Innovation Program of Hunan Province(Grant Numbers:2021SK1014 and 2022WZ1027)the Colleges and Universities of Hunan Province(Grant Number:HNJG 20200440)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant Number:21B0411)the Scientific Research Project of Changsha Central Hospital(Number:YNKY202201).
文摘Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is typically accompanied by a poor prognosis.Exploring the synergistic potential of combining multiple chemotherapeutic agents may represent a promising avenue for optimizing treatment efficacy.Methods:This study investigated whether 3-Methyladenine(3-MA)could potentiated the effect of PTX and its potential molecular mechanism.Samples were divided into the following categories:Negative control(NC)with the solvent dimethyl sulfoxide(DMSO,0.5%v/v),PTX(400 nM),3-MA(4 mM),and PTX(400 nM)+3-MA(4 mM).The viability of NPC cells was assessed using both the cell counting kit-8(CCK-8)assay and the colony formation assay.Microscopic observation was performed to identify morphological cell changes.Flow cytometry was used to assess cell cycle status,mitochondrial membrane potential(MMP),and apoptotic cells.Western blotting was conducted to quantify the protein expression.Results:3-MA enhanced PTX-specific inhibition of NPC cell proliferation.PTX,either alone or in combination with 3-MA,caused cell cycle halt at the G2/M phase in the majority of NPC cells,and the combination treatment of PTX with 3-MA induced a higher rate of NPC cell death compared to PTX alone.Western blotting results revealed the combination of PTX with 3-MA heightened activation of cyclin-dependent kinase 1(CDK1),a key molecule in shifting cells from mitotic arrest to apoptosis,led to a reduction in Myeloid Cell Leukemia 1(MCL-1)expression and an increase in Poly(ADP-ribose)polymerase(PARP)cleavage.Conclusion:The concurrent administration of PTX with 3-MA effectively enhances PTX’s inhibitory impact on NPC and activates the apoptosis signal regulated by CDK1.
基金the support from the Guangdong Basic and Applied Basic Research Foundation (2020A1515011376)the National Natural Science Foundation of China (31601397)+2 种基金the Innovative Leading Talents Project of Guangzhou Development ZoneGuangzhou Innovation Leading Talent Projectthe 111 Project (B17018)。
文摘Polyphenol-rich foods have been shown to be good for cancer prevention as powerful antioxidants. In this study, the mechanisms of wild pink bayberry free phenolic extract(WPBFE)inhibiting the proliferation and inducing apoptotic of MDA-MB-231 breast cancer cells was examined. The main phenolic acids and flavonols in WPBFE were gallic acid((18.83 ± 0.44)μg/g FW)and myricetin((1.52 ± 0.05)μg/g FW), respectively. The maximum inhibition rate of WPBFE at non-cytotoxicity dose(below 80 mg/mL)was 81%. Western blotting analysis showed that WPBFE could cause the arrest of cell cycle in G0/G1 phase by down-regulating expression levels of PCNA, CDK4, cyclin D1 and up-regulating the expression level of p21. Meanwhile, WPBFE induced apoptosis through initiating the mitochondrial death pathway by up-regulating cleaved caspase-3 and enhancing the ratio of Bax/Bcl-2, with the maximum expression levels of 1.29 and 2.03 folds that of control group, respectively. Further study of the upstream protein, we found that WPBFE down-regulated TRAF2, while upregulated p-ASK1, p-p38 and p-p53. Furthermore, WPBFE could down-regulate the expression of p-PI3K and p-Akt. These observations indicated that WPBFE might play an anticancer role through regulating the p38 MAPK together with PI3K/Akt pathway.
文摘Objective:To investigate the potential synergistic activity of diclofenac with piperine and D-limonene in inducing apoptosis and cell cycle arrest in breast cancer MCF-7 cells.Methods:Molecular docking study was conducted to evaluate the binding affinity of diclofenac with piperine and D-limonene against p53,Bax,and Bcl-2.The MTT assay was used to determine IC50,and the Chou-Talay method was used to determine the synergistic concentration of the combination treatment of diclofenac plus piperine and diclofenac plus D-limonene.Apoptosis detection,cell cycle arrest,reactive oxygen species production,and mitochondrial membrane potential were also investigated.Results:Diclofenac,piperine,and D-limonene showed potent binding affinity for p53,Bax,and Bcl-2.Diclofenac plus piperine and diclofenac plus D-limonene enhanced the formation of reactive oxygen species,which also had an effect on the mitochondrial membrane’s integrity and caused DNA fragmentation.Diclofenac plus piperine and diclofenac plus D-limonene arrested the cells in the sub-G0phase while drastically lowering the percentage of cells in the G2/M phase.Furthermore,the elevated apoptosis in the combined therapy was confirmed by annexin V/propidium iodide staining.Conclusions:The combined therapy prominently enhanced the antiproliferative and apoptotic effects on MCF-7 cells compared with treatment with diclofenac,piperine,and D-limonene alone.
基金supported by Shahrekord University of Medical Sciences,Shahrekord,Iran(Ethics Code:IR.SKUMS.REC.1397.119,Grant No.3696 and Ethics Code:IR.SKUMS.REC.1401.197,Grant No.6651).
文摘Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.
基金the Key Research and Development Program of Shaanxi,No.2021SF-227 and No.2020SF-297the Natural Science Basic Research Program of Shaanxi,No.2023-JC-YB-770。
文摘BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis,cell cycle regulation,prolifera-tion,and survival.Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma(HCC).However,the role of PHB1 in HCC is controversial.AIM To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro.METHODS HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria;then,PHB1 levels in the sera and liver tissues of these participates were determined using ELISA,RT-PCR,and immunohistoche-mistry.Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA(shRNA-PHB1)for 24-72 h.Cell prolif-eration was analysed with an MTT assay.Cell cycle progression and apoptosis were analysed using flow cytometry(FACS).The mRNA and protein expression levels of the cell cycle-related molecules p21,Cyclin A2,Cyclin E1,and CDK2 and the cell apoptosis-related molecules cytochrome C(Cyt C),p53,Bcl-2,Bax,caspase 3,and caspase 9 were measured by real-time PCR and Western blot,respectively.RESULTS Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals,and decreased PHB1 was positively correlated with low differentiation,TNM stage III-IV,and alpha-fetoprotein≥400μg/L.Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner.FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis.The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells.The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41%±1.06%,which was significantly greater than that of apoptotic control cells(3.65%±0.85%,P<0.01)and empty vector-transfected cells(4.21%±0.52%,P<0.01).Similar results were obtained with SMMC-7721 cells.Furthermore,the mRNA and protein expression levels of p53,p21,Bax,caspase 3,and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2,Cy-clin E1,CDK2,and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells.However,when PHB1 was upregulated in human HCC cells,Cyt C expression levels were increased in the cytosol and decreased in the mitochondria,which indicated that Cyt C had been released into the cytosol.Conversely,these effects were reversed when PHB1 was knocked down.CONCLUSION PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.
基金Program for Changjiang Scholar and Innova-tive Team in University(Grant No.985-2-063-112).
文摘Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of its anticancer action. Methods The MTT method was used to investigate the inhibitory effect of oridonin on BGC-823 cells. The apoptosis-induction effect was evaluated by confocal laser microscopy and flow cytometry. The change of mitochondrial membrane potential and the increase of intracellular Ca^2+ were assessed by fluorescence probe rhodamine123 and Fluo 3-AM, respectively, with flow cytometry. The expression of apoptosis and cell cycle related proteins was studied using western blotting. Results Oridonin inhibited BGC-823 cells growth with IC50 of 22.21 p, mol.L^-1. It induced apoptosis in a dose-dependent manner. In addition, it decreased mitochondria membrane potential, increased intracellular Ca^2+, and activated pro-caspase 3. BGC-823 cells were arrested in G2/M cell cycle phase with lower expression of cyclin A protein. The up-regulation of p53 was observed before apoptosis and cell cycle arrest occurred. Conclusion Oridonin inhibits the proliferation of BGC-823 cells through G2/M cell cycle arrest and apoptosis induction, which is mediated by influx of Ca^2+, up-regulation of p53, activation of caspase-3, and down-regulation of cyclin A.
文摘To study the effects of low dose radiation (LDR) on tumor apoptosis, cellcycle progression and changes of apoptosis-related protein Bcl-2 in tumor-bearing mice. Methods:Male mice of Kunming strain were implanted subcutaneously with S180 sarcoma cells in the left inguenas an in situ experimental animal model. Seven days later, the mice were subjected to 75 mGywhole-body γ-irradiation. At 24 and 48 h after the irradiation, all mice were sacrificed. The tumorsizes were measured, and tumor cell apoptosis and cell cycle progression were analyzed by flowcytometry. The expression of apoptosis-related protein Bcl-2 and the apoptotic rate of tumor cellswere observed by immunohistochemistry and electron microscopy. Results: Tumors grew significantlyslower after LDR (P 【 0.05). The tumor cells were arrested in G1 phrase and the expression of Bcl-2protein decreased at 24 h. Apoptotic rate of tumor cells was increased significantly at 48 h afterLDR (P 【 0.01). Conclusion: LDR could cause a G1-phase arrest and increase the apoptosis of tumorcells through the low level of apoptosis-related protein bcl-2 in the tumor-bearing mice. Theorganized immune function and anti-tumor ability are markedly increased after LDR. Our studyprovides practical evidence of clinical application to cancer treatment.
基金Supported by The Grant CMU92-CM-02 from China Medical University
文摘AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action. METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub431 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting. RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-Go cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-Go cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca^2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis. CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis.
文摘AIM We have previously reported that inducible over-expresaion of Bak may prolong cell cycle in G1 phase and lead to apoptosis in HCC-9204 cells. This study is to investigate whether p27KIP1 plays an important role in this process. MEHODS In order to elucidate the exact function of p27KIP1 in this process, a zinc inducible p27KIP1 stable transfectant and transient p27KIP1- GFP fusion transfectant were constructed. The effects of inducible p27KIP1 on cell growth, cell cycle arrest and apoptosis were examined in the mock, control pMD vector, and pMD-KIP1 transfected HCC-9204 cells. RESULTS This p27KIP1-GFP transfectant may transiently express the fusion gene. The cell growth was reduced by 35% at 48 h of p27KIP1 induction with zinc treatment as determined by trypan blue exclusion assay. These differences remained the same after 72 h of p27KIP1 expression, p27KIP1 caused cell cycle arrest after 24 h of induction, with 40% increase in G1 population. Prolonged p27KIP1 expression in this cell line induced apoptotic cell death reflected by TUNEL assay. Fourty-eight h and 72 h of p27KIP1 expression showed a characteristic DNA ladder on agarose gel electrophoresis.
文摘BACKGROUND: Gallbladder carcinoma, a lethal malignant neoplasm with poor prognosis, has dismal results of surgical resection and chemoradiotherapy. We previously reported that norcantharidin (NCTD) is useful against growth, proliferation, and invasion of human gallbladder carcinoma GBC-SD cells in vitro. In this study, we further studied the inhibitory effect of NCTD on the growth of xenografted tumors of human gallbladder carcinoma in nude mice in vivo and the underlying mechanisms. METHODS: The tumor xenograft model of human gallbladder carcinoma in nude mice in vivo was established with subcutaneous GBC-SD cells. The experimental mice were randomly divided into control, 5-FU, NCTD, and NCTD+5-FU groups which were given different treatments. Tumor growth in terms of size, growth curve, and inhibitory rate was evaluated. Cell cycle, apoptosis, and morphological changes of the xenografted tumors were assessed by flow cytometry and light/electron microscopy. The expression of the cell cycle-related proteins cyclin-D1 and p27 as well as the apoptosis-related proteins Bcl-2, Box, and survivin were determined by the streptavidin-biotin complex (SABC) method and RT-PCR. RESULTS: NCTD inhibited the growth of the xenografted tumors in a dose- and time-dependent manner. Tumor volume decreased (5.61+/-0.39 vs. 9.78+/-0.61 cm(3), P=0.000) with an increased tumor inhibitory rate (42.63% vs. 0%, P=0.012) in the NTCD group compared with the control group. The apoptosis rate increased (15.08+/-1.49% vs. 5.49+/-0.59%, P=0.0001) along with a decreased percentage of cells in S phase (43.47+/-2.83% vs. 69.85+/-1.96%, P=0.0001) in the NTCD group compared with the control group. The morphological changes of apoptosis such as nuclear shrinkage, chromatin aggregation, chromosome condensation, and typical apoptosis bodies in the xenografted tumor cells induced by NCTD were observed by light and electron microscopy. The expression of cyclin-D1, Bcl-2 and survivin proteins/mRNAs decreased significantly, with increased expression of p27 and Bax proteins/mRNAs in the NCTD group compared with the control group. CONCLUSION: NCTD inhibits the growth of xenografted tumors of human gallbladder carcinoma in nude mice by inducing apoptosis and blocking the cell cycle in vivo.
基金This work was supported by a grant of National Natu-ral Science Foundation of China(No.30230110)a grant of Science and Technology Committee of Shanghai Mu-nicipality(No.04DZ14901)a grant of Chinese Acad-emy of Sciences#KSCX2-SW-203 to Jia Rui WU.
文摘Recent studies indicate that cell-cycle checkpoints are tightly correlated with the regulation of apoptosis, in which p53 plays an important role. Our present works show that the expression of E6/E7 oncogenes of human papillomavirus in HeLa cells is inhibited in the presence of anti-tumor reagent tripchlorolide (TC), which results in the up-regulation of p53 in HeLa cells. Interestingly, under the same TC-treatment, the cells at the early S-phase are more susceptible to apoptosis than those at the middle S-phase although p53 protein is stabilized to the same level in both situations. Significant difference is exhibited between the two specified expression profiles. Further analysis demonstrates that anti-apoptotic gene survivin is up-regulated by p53 in the TC-treated middle-S cells, whereas it is down-regulated by p53 in the TC-treated early-S cells. Taken together, the present study indicates that the differential p53-regulated expres- sion of survivin at different stages of the cell cycle results in different cellular outputs under the same apoptosis-inducer.
基金supported by grant from the Natural Science Foundation of Jiangsu Province(No.BK2011140)
文摘Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri(L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.
文摘AIM: To study the effect of fluoride on oxidative stress, DNA damage and apoptosis as well as cell cycle of rat oral mucosal cells and hepatocytes.METHODS: Ten male SD rats weighing 80N120 g were randomly divided into control group and fluoride group, 5 animals each group. The animals in fluoride group had free access to deionized water containing 150 mg/L sodium fluoride (NaF). The animals in control group were given distilled water. Four weeks later, the animals were killed. Reactive oxygen species (ROS) in oral mucosa and liver were measured by Fenton reaction, lipid peroxidation product, malondialdehyde (MDA), was detected by thiobarbituric acid (TBA) reaction, reduced glutathione (GSH) was assayed by dithionitrobenzoic acid (DTNB) reaction. DNA damage in oral mucosal cells and hepatocytes was determined by single cell gel (SCG) electrophoresis or comet assay. Apoptosis and cell cycle in oral mucosal cells and hepatocytes were detected by flow cytometry.RESULTS: The contents of ROS and MDA in oral mucosa and liver tissue of fluoride group were significantly higher than those of control group (P〈 0.01), but the level of GSH was markedly decreased (P〈 0.01). The contents of ROS, MDA and GSH were (134.73 + 12.63) U/mg protein, (1.48 + 0.13) mmol/mg protein and (76.38 ~ 6.71) mmol/ mg protein in oral mucosa respectively, and (143.45+ 11.76) U/mg protein, (1.44:1:0.12) mmol/mg protein and (78.83±7.72) mmol/mg protein in liver tissue respectively. The DNA damage rate in fluoride group was 50.20% in oral mucosal cells and 44.80% in hepatocytes, higher than those in the control group (P 〈0.01). The apop- tosis rate in oral mucosal cells was (13.63 + 1.81) % in fluoride group, and (t2.76+ 1.67) % in hepatocytes, higher than those in control group. Excess fluoride could differently lower the number of oral mucosal cells and hepatocytes at G0/G1 and S G2/M phases (P〈 0.05).CONCLUSION: Excess fluoride can induce oxidative stress and DNA damage and lead to apoptosis and cell cycle change in rat oral mucosal cells and hepatocytes.
基金the Canadian Institutes of Health Research and the Cancer Research Society, and fellowships by the Health Research Funds of Quebec, Canada
文摘Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senes- cence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving “sensor” proteins that sense the damage, and transmit signals to “transducer” proteins, which, in turn, convey the signals to numerous “effector” proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.
基金Supported by the Basic Research Key Project of the Science Foundation of Shanghai Municipal Commission of Science and Technology, No. 02JC14001
文摘AIM: To study the in vitro and in vivo inhibitory effects of genistein on invasive potential of Bel 7402 hepatocellular carcinoma (HCC) cells and to explore the underlying mechanism. METHODS: Bel 7402 HCC cells were exposed to genistein. The invasive activity of tumor cells was assayed in transwell cell culture chamber, p125^FAK expression and cell cycle were evaluated by a functional assay. Cell apoptosis analysis was performed with TUNEL method. In addition, bilateral subrenal capsule xenograft transplantation of HCC was performed in 10 nude mice. Genistein was injected and the invasion of HCC into the renal parenchyma was observed. Nicrovessels with immunohistochemical staining were detected. RESULTS: Genistein significantly inhibited the growth of Bel 7402 cells, the inhibitory rate of tumor cells was 26 -42%. The invasive potential of Bel 7402 cells in vitro was significantly inhibited, the inhibitory rate was 11- 28%. Genistein caused G2/M cell cycle arrest, S phase decreased significantly. The occurrence of apoptosis in genistein group increased significantly. The expression of p125^FAK in 5 μg/mL genistein group (15.26±0.16%) and 10 μg/mL genistein group (12.89±0.36%) was significantly lower than that in the control group (19.75± 1.12%, P〈0.05). Tumor growth in genistein-treated nude mice was significantly retarded in comparison to control mice, the inhibitory rate of tumor growth was about 20%. Genistein also significantly inhibited the invasion of Bel 7402 cells into the renal parenchyma of nude mice with xenograft transplant. The positive unit value of microvessels in genistein-treated group (10.422 ±0.807) was significantly lower than that in control group (22.330 ± 5.696, P〈 0.01). CONCLUSION: Genistein can effectively inhibit the invasive potential of Bel 7402 HCC cells by altering cell cycle, apoptosis and angiogenesis, inhibition of focal adhesion kinase may play a significant role in this process.
基金supported by the National Natural Science Foundation of China (No.31572436)Natural Science Foundation of China (No. 31372339)
文摘Background: The objectives of this study were to characterize changes in the relative m RNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal epithelium(RE) of sheep during high-grain(HG) diet adaptation.Results: Twenty sheep were assigned to four groups with five animals each. These animals were assigned to different periods of HG diet(containing 40% forage and 60% concentrate mix) feeding. The HG groups received an HG diet for7(G7, n = 5), 14(G14, n = 5) and 28 d(G28, n = 5), respectively. In contrast, the control group(CON, n = 5) was fed the forage-based diet for 28 d. The results showed that HG feeding linearly decreased(P < 0.001) the ruminal p H, and increased the concentrations of ruminal total volatile fatty acid(linear, P = 0.001), butyrate(linear, P < 0.001), valerate(quadratic P = 0.029) and the level of IGF-1(quadratic, P = 0.043) in plasma. The length(quadratic, P = 0.004), width(cubic, P = 0.015) and surface of the ruminal papillae(linear, P = 0.003) were all enlarged after 14 d of HG diet feeding.HG feeding cubically increased the number of cell layers forming the stratum corneum(SC, P < 0.001) and the thickness of the SC(P < 0.001) and stratum basale(P < 0.001). The proportion of basal layer cells in the RE decreased(linear, P < 0.001) in the G0/G1-phase, but it increased linearly(P = 0.006) in the S-phase and cubically(P = 0.004) in the G2/M-phases. The proportion of apoptosis cells in G7, G14 and G28 was reduced compared to the CON(quadratic, P <0.001). HG diet feeding linearly decreased the m RNA expression of Cyclin E1(P = 0.021) and CDK-2(P = 0.001) and(P = 0.027) the protein expression of Cyclin E1. Feeding an HG diet linearly increased the m RNA expression of genes IGFBP-2(P = 0.034) and IGFBP 5(P < 0.009), while linearly decreasing(P < 0.001) the IGFBP 3 expression. The expression of cell apoptosis gene Caspase 8 decreased(quadratic, P = 0.012), while Bad m RNA expression tended to decrease(cubic, P = 0.053) after HG feeding.Conclusions: These results demonstrated sequential changes in rumen papillae size, cell cycle regulation and the genes involved in proliferation and apoptosis as time elapsed in feeding a high-grain diet to sheep.