A multiple-wavelength GaInAsP/InP microlaser with microdisk radiuses from 10 m to 10.6 m laterally coupled into a bus waveguide are fabricated by standard photolithygraphy and inductively coupled-plasma (ICP) etching ...A multiple-wavelength GaInAsP/InP microlaser with microdisk radiuses from 10 m to 10.6 m laterally coupled into a bus waveguide are fabricated by standard photolithygraphy and inductively coupled-plasma (ICP) etching techniques. The lasing wavelengths are 1533 nm, 1541 nm, 1551 nm and 1555 nm at the CW injection current of 10 mA for the four microlasers. The proposed multiple-microlaser array would be useful for realizing compact wavelength division multiplexing (WDM) light source for optical interconnects.展开更多
We demonstrate single-mode microdisk lasers in the telecom band with ultralow thresholds on erbium-ytterbium co-doped thin-film lithium niobate(TFLN).The active microdisk was fabricated with high-Q factors by photolit...We demonstrate single-mode microdisk lasers in the telecom band with ultralow thresholds on erbium-ytterbium co-doped thin-film lithium niobate(TFLN).The active microdisk was fabricated with high-Q factors by photolithography-assisted chemomechanical etching.Thanks to the erbium-ytterbium co-doping providing high optical gain,the ultralow loss nanostructuring,and the excitation of high-Q coherent polygon modes,which suppresses multimode lasing and allows high spatial mode overlap between pump and lasing modes,single-mode laser emission operating at 1530 nm wavelength was observed with an ultralow threshold,under a 980-nm-band optical pump.The threshold was measured as low as 1μW,which is one order of magnitude smaller than the best results previously reported in single-mode active TFLN microlasers.The conversion efficiency reaches 4.06×10^(-3),which is also the highest value reported in single-mode active TFLN microlasers.展开更多
Micro-and nanodisk lasers have emerged as promising optical sources and probes for on-chip and free-space applications.However,the randomness in disk diameter introduced by standard nanofabrication makes it challengin...Micro-and nanodisk lasers have emerged as promising optical sources and probes for on-chip and free-space applications.However,the randomness in disk diameter introduced by standard nanofabrication makes it challenging to obtain deterministic wavelengths.To address this,we developed a photoelectrochemical(PEC)etching-based technique that enables us to precisely tune the lasing wavelength with subnanometer accuracy.We examined the PEC mechanism and compound semiconductor etching rate in diluted sulfuric acid solution.Using this technique,we produced microlasers on a chip and isolated particles with distinct lasing wavelengths.These precisely tuned disk lasers were then used to tag cells in culture.Our results demonstrate that this scalable technique can be used to produce groups of lasers with precise emission wavelengths for various nanophotonic and biomedical applications.展开更多
In recent years, there have been a significant number of demonstrations of small metallic and plasmonic lasers. The vast majority of these demonstrations have been for optically pumped devices. Electrically pumped dev...In recent years, there have been a significant number of demonstrations of small metallic and plasmonic lasers. The vast majority of these demonstrations have been for optically pumped devices. Electrically pumped devices are advantageous for applications and could demonstrate concepts not amenable for optical pumping. However, there have been relatively few demonstrations of electrically pumped small metal cavity lasers. This lack of results is due to the following reasons: there are limited types of electrically pumped gain media available; there is a significantly greater level of complexity required in the fabrication of electrically pumped devices; finally, the required components for electrical pumping restrict cavity design options and furthermore make it intrinsically more difficult to achieve lasing. This review looks at the motivation for electrically pumped nanolasers, the key issues that need addressing for them to be realized, the results that have been achieved so far including devices where lasing has not been achieved, and potential new directions that could be pursued.展开更多
Vertical cavity surface emitting laser(VCSELs)as the ideal light source for rubidium(Rb)and cesium(Cs)atomic clocks is analyzed for its mode and polarization control.We fabricated three kinds of shapes:triangular,elli...Vertical cavity surface emitting laser(VCSELs)as the ideal light source for rubidium(Rb)and cesium(Cs)atomic clocks is analyzed for its mode and polarization control.We fabricated three kinds of shapes:triangular,elliptic,and circular oxidation apertures which also have different sizes.We formed three different shape oxide apertures by wetoxidation with 36μm-39μm circular mesa.Our results show that triangular oxidized-VCSEL has the advantages of mode and polarization selection over elliptic and circular oxide apertures.When triangular oxide-confined VCSELs emit in single mode,the measured side mode suppression ratio(SMSR)is larger than 20 d B and orthogonal polarization suppression ratio achieves 10 d B.Resonant blueshift of VCSELs with triangular and elliptic apertures is observed with the decrease of aperture size.展开更多
利用反应离子刻蚀 ( RIE)和湿法腐蚀方法在 In Ga As/ In Ga As P多量子阱材料上研制出直径为 8μm、4 .5μm和 2 μm的碟型半导体微腔激光器。其中 2 μm直径的微碟在液氮温度下其光泵浦激射阈值仅为 3 μW左右。对高光功率密度下泵浦...利用反应离子刻蚀 ( RIE)和湿法腐蚀方法在 In Ga As/ In Ga As P多量子阱材料上研制出直径为 8μm、4 .5μm和 2 μm的碟型半导体微腔激光器。其中 2 μm直径的微碟在液氮温度下其光泵浦激射阈值仅为 3 μW左右。对高光功率密度下泵浦时出现的多模激射、跳模和激射光谱强度饱和现象进行了研究。展开更多
用 MOCVD方法生长了 In Ga As/ In Ga As P多量子阱微碟激光器外延片 ,用光刻、干法刻蚀和湿法刻蚀等现代化的微加工技术制备出直径 9.5μm的 In Ga As/ In Ga As P微碟激光器 ,并详细介绍了整个制备工艺过程 .在液氮温度下用氩离子激...用 MOCVD方法生长了 In Ga As/ In Ga As P多量子阱微碟激光器外延片 ,用光刻、干法刻蚀和湿法刻蚀等现代化的微加工技术制备出直径 9.5μm的 In Ga As/ In Ga As P微碟激光器 ,并详细介绍了整个制备工艺过程 .在液氮温度下用氩离子激光器泵浦方式实现了低阈值光泵激射 ,测出单个微碟激光器的阈值光功率为 15 0μW,激射波长约为 1.6μm,品质因数 Q=80 0 ,激射光谱线宽为 2 nm,同时指出微碟激光器激射线宽比 F-展开更多
文摘A multiple-wavelength GaInAsP/InP microlaser with microdisk radiuses from 10 m to 10.6 m laterally coupled into a bus waveguide are fabricated by standard photolithygraphy and inductively coupled-plasma (ICP) etching techniques. The lasing wavelengths are 1533 nm, 1541 nm, 1551 nm and 1555 nm at the CW injection current of 10 mA for the four microlasers. The proposed multiple-microlaser array would be useful for realizing compact wavelength division multiplexing (WDM) light source for optical interconnects.
基金supported by the National Key R&D Program of China(Nos.2019YFA0705000,2022YFA1404600,and 2022YFA1205100)the National Natural Science Foundation of China(NSFC)(Nos.62122079,12192251,62235019,12334014,12134001,12104159,and 11933005)+4 种基金the Innovation Program for Quantum Science and Technology(No.2021ZD0301403)the Shanghai Municipal Science and Technology Major Project(No.2019SHZDZX01)the Science and Technology Commission of Shanghai Municipality(Nos.21DZ1101500 and 23ZR1481800)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2020249)the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(No.2023nmc005)。
文摘We demonstrate single-mode microdisk lasers in the telecom band with ultralow thresholds on erbium-ytterbium co-doped thin-film lithium niobate(TFLN).The active microdisk was fabricated with high-Q factors by photolithography-assisted chemomechanical etching.Thanks to the erbium-ytterbium co-doping providing high optical gain,the ultralow loss nanostructuring,and the excitation of high-Q coherent polygon modes,which suppresses multimode lasing and allows high spatial mode overlap between pump and lasing modes,single-mode laser emission operating at 1530 nm wavelength was observed with an ultralow threshold,under a 980-nm-band optical pump.The threshold was measured as low as 1μW,which is one order of magnitude smaller than the best results previously reported in single-mode active TFLN microlasers.The conversion efficiency reaches 4.06×10^(-3),which is also the highest value reported in single-mode active TFLN microlasers.
基金supported by the US National Institutes of Health research grants (DP1-OD022296, R01-EB033155, R01-EB034687)
文摘Micro-and nanodisk lasers have emerged as promising optical sources and probes for on-chip and free-space applications.However,the randomness in disk diameter introduced by standard nanofabrication makes it challenging to obtain deterministic wavelengths.To address this,we developed a photoelectrochemical(PEC)etching-based technique that enables us to precisely tune the lasing wavelength with subnanometer accuracy.We examined the PEC mechanism and compound semiconductor etching rate in diluted sulfuric acid solution.Using this technique,we produced microlasers on a chip and isolated particles with distinct lasing wavelengths.These precisely tuned disk lasers were then used to tag cells in culture.Our results demonstrate that this scalable technique can be used to produce groups of lasers with precise emission wavelengths for various nanophotonic and biomedical applications.
基金Project supported by an Australian Research Council Future Fellowship Grant
文摘In recent years, there have been a significant number of demonstrations of small metallic and plasmonic lasers. The vast majority of these demonstrations have been for optically pumped devices. Electrically pumped devices are advantageous for applications and could demonstrate concepts not amenable for optical pumping. However, there have been relatively few demonstrations of electrically pumped small metal cavity lasers. This lack of results is due to the following reasons: there are limited types of electrically pumped gain media available; there is a significantly greater level of complexity required in the fabrication of electrically pumped devices; finally, the required components for electrical pumping restrict cavity design options and furthermore make it intrinsically more difficult to achieve lasing. This review looks at the motivation for electrically pumped nanolasers, the key issues that need addressing for them to be realized, the results that have been achieved so far including devices where lasing has not been achieved, and potential new directions that could be pursued.
文摘Vertical cavity surface emitting laser(VCSELs)as the ideal light source for rubidium(Rb)and cesium(Cs)atomic clocks is analyzed for its mode and polarization control.We fabricated three kinds of shapes:triangular,elliptic,and circular oxidation apertures which also have different sizes.We formed three different shape oxide apertures by wetoxidation with 36μm-39μm circular mesa.Our results show that triangular oxidized-VCSEL has the advantages of mode and polarization selection over elliptic and circular oxide apertures.When triangular oxide-confined VCSELs emit in single mode,the measured side mode suppression ratio(SMSR)is larger than 20 d B and orthogonal polarization suppression ratio achieves 10 d B.Resonant blueshift of VCSELs with triangular and elliptic apertures is observed with the decrease of aperture size.
文摘利用反应离子刻蚀 ( RIE)和湿法腐蚀方法在 In Ga As/ In Ga As P多量子阱材料上研制出直径为 8μm、4 .5μm和 2 μm的碟型半导体微腔激光器。其中 2 μm直径的微碟在液氮温度下其光泵浦激射阈值仅为 3 μW左右。对高光功率密度下泵浦时出现的多模激射、跳模和激射光谱强度饱和现象进行了研究。
文摘用 MOCVD方法生长了 In Ga As/ In Ga As P多量子阱微碟激光器外延片 ,用光刻、干法刻蚀和湿法刻蚀等现代化的微加工技术制备出直径 9.5μm的 In Ga As/ In Ga As P微碟激光器 ,并详细介绍了整个制备工艺过程 .在液氮温度下用氩离子激光器泵浦方式实现了低阈值光泵激射 ,测出单个微碟激光器的阈值光功率为 15 0μW,激射波长约为 1.6μm,品质因数 Q=80 0 ,激射光谱线宽为 2 nm,同时指出微碟激光器激射线宽比 F-