Environmental stability is a major bottleneck of perovskite solar cells.Only a handful of studies are investigating the effect of moisture on the structural degradation of the absorber.They mostly rely on ex situ expe...Environmental stability is a major bottleneck of perovskite solar cells.Only a handful of studies are investigating the effect of moisture on the structural degradation of the absorber.They mostly rely on ex situ experiments and on completely degraded samples,which restrict the assessment on initial and final stage.By combining in situ X-ray diffraction under controlled 85%relative humidity,and live observations of the water-induced degradation using liquid-cell transmission electron microscopy,we reveal two competitive degradation paths leading on one hand to the decomposition of state-of-theart mixed cation/anion(Cs_(0.05)(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17)I_(0.83))_(3)(CsMAFA)into PbI_(2) through a dissolution/recrystallization mechanism and,on the other hand,to a non-equilibrium phase segregation leading to CsPb_(2)Br_(5) and a Cesium-poor/iodide-rich Cs_(0.05)-x(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17-2y)I_(0.83)+2y)_(3) perovskite.This degradation mechanism is corroborated at atomic-scale resolution through solid-state ^(1)H and ^(133)Cs NMR analysis.Exposure to moisture leads to a film containing important heterogeneities in terms of morphology,photoluminescence intensities,and lifetimes.Our results provide new insights and consensus that complex perovskite compositions,though very performant as champion devices,are comparatively metastable,a trait that limits the chances to achieve long-term stability.展开更多
Single crystal of Ba2SbGaSs has been synthesized by the high temperature solidstate reaction method. The compound crystallizes in the orthorhombic space group Pnma with a = 12.177(4), b = 8.880(3), c = 8.982(3) ...Single crystal of Ba2SbGaSs has been synthesized by the high temperature solidstate reaction method. The compound crystallizes in the orthorhombic space group Pnma with a = 12.177(4), b = 8.880(3), c = 8.982(3) A, V= 971.4(6) A3, Z = 4, De = 4.284 g/cm3,μ = 14.487 mm-1, F(000) - 1096, the final R = 0.0171 and wR = 0.0384 for all data. The structure comprises an infinite one-dimensional 1∞[SbGaS5]4- anionic chain constructed from the GaS4 tetrahedra and the SbS5 polyhedra via sharing edge alternately. The paralleled 1∞[SbGaS5]4anionic chains engage with each other and form the two-dimensional Sb-Ga-S layer perpendicular to a-axis with the isolated Ba2+ cations arranged between layers. The IR spectrum and the UV-Vis spectrum have been investigated. Also, the first-principles band structure and density of states calculations indicate that the compound belongs to indirect semiconductor with the band gap of 2.1 eV, which is supported by the UV-Vis diffuse reflectance results.展开更多
The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,...The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,wide electrochemical window,and stability to Li metal anode,are promising solid-state electrolyte(SSEs)materials for SSLMBs.However,Li/LLZTO interface issues including high interface resistance,inhomogeneous Li deposition,and Li dendrite growth have hindered the practical application of SSLMBs.Herein,a multi-functional Li–SnF_(2) composite anode with Li,LiF,and Li-Sn alloy was specifically designed and prepared.The composite anode improves the wettability to LLZTO,constructing an intimate contact interface between it and LLZTO.Meanwhile,ionic/electronic conductive paths in situ formed at the interface can effectively uniform Li deposition and suppress Li dendrite.The solid-state symmetric cell exhibits low interface resistance(11Ω·cm^(2)) and high critical current density(1.3 mA·cm^(−2))at 25℃.The full SSLMB based on LiFePO_(4) or LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode also shows stable cycling performance and high rate capability.This work provides a new composite anode strategy for achieving high-energy density and high-safety SSLMBs.展开更多
Over 70 years have passed since the first transistor was invented at Bell Labs,New Jersey,USA on 16 December 1947 by William Shockley,John Bardeen and Walter Brattain,which was perhaps the most important electronics e...Over 70 years have passed since the first transistor was invented at Bell Labs,New Jersey,USA on 16 December 1947 by William Shockley,John Bardeen and Walter Brattain,which was perhaps the most important electronics event of the 20th century as it later made possible the integrated circuit(IC)and microprocessor that are the basis of modern electronics.The first electronic products were made from individual transistors but before long engineers learnt how to integrate several simultaneously,giving birth to the first IC in 1957.Industry development thereafter followed a predominantly evolutionary process with the number of transistors on an IC increasing exponentially each year,a process known as Moore’s Law after one of the semiconductor industry’s key founding fathers.展开更多
Solid-state batteries(SSBs)have received widespread attention with their high safety and high energy density characteristics.However,solid-solid contacts in the internal electrode material and the electrode material/s...Solid-state batteries(SSBs)have received widespread attention with their high safety and high energy density characteristics.However,solid-solid contacts in the internal electrode material and the electrode material/solid electrolyte(SE)interfaces,as well as the severe electrochemo-mechanical effects caused by the internal stress due to the volume change of the active material,these problems hinder ion/electron transport within the SSBs,which significantly deteriorates the electrochemical performance.Applying fabrication pressures and stack pressures are effective measures to improve solid-solid contact and solve electrochemo-mechanical problems.Herein,the influences of different pressures on cathode material,anode material,SEs,and electrode/SEs interface are briefly summarized from the perspective of interface ion diffusion,transmission of electrons and ions in internal particles,current density and ion diffusion kinetics,and the volume changes of Li^(+)stripping/plating based on two physical contact models,and point out the direction for the future research direction of SSBs and advancing industrialization by building the relationship between pressures and SSBs electrochemistry.展开更多
An interlayer is usually employed to tackle the interfacial instability issue between solid electrolytes(SEs)and Li metal caused by the side reaction.However,the failure mechanism of the ionic conductor interlayers,es...An interlayer is usually employed to tackle the interfacial instability issue between solid electrolytes(SEs)and Li metal caused by the side reaction.However,the failure mechanism of the ionic conductor interlayers,especially the influence from electron penetration,remains largely unknown.Herein,using Li1.3Al0.3Ti1.7(PO4)3(LATP)as the model SE and LiF as the interlayer,we use metal semiconductor contact barrier theory to reveal the failure origin of Li/LiF@LATP interface based on the calculation results of density functional theory(DFT),in which electrons can easily tunnel through the LiF grain boundary with F vacancies due to its narrow barrier width against electron injection,followed by the reduction of LATP.Remarkably,an Al-LiF bilayer between Li/LATP is found to dramatically promote the interfacial stability,due to the highly increased barrier width and homogenized electric field at the interface.Consequently,the Li symmetric cells with Al-LiF bilayer can exhibit excellent cyclability of more than 2,000 h superior to that interlayered by LiF monolayer(~860 h).Moreover,the Li/Al-LiF@LATP/LiFePO4 solid-state batteries deliver a capacity retention of 83.2%after 350 cycles at 0.5 C.Our findings emphasize the importance of tuning the electron transport behavior by optimizing the potential barrier for the interface design in high-performance solid-state batteries.展开更多
The device structure and technical processings of quasi-planar self-aligned silicon avalanche electron emission array arc introduced. The processing step at the edge of electron emission region is about 10nm only and ...The device structure and technical processings of quasi-planar self-aligned silicon avalanche electron emission array arc introduced. The processing step at the edge of electron emission region is about 10nm only and the width of self-aligned current channel of shallow As implantation is about 3μm. Its I-V characteristics show a larger linear region and lower series resistance than that of the previous silicon avalanche electron emission devices. Some of the electron emission characteristics are also discussed in this paper.展开更多
Thermionic emission is a tunneling phenomenon,which depicts that electrons on the surface of a conductor can be pulled out into the vacuum when they are subjected to high electrical tensions while being heated hot eno...Thermionic emission is a tunneling phenomenon,which depicts that electrons on the surface of a conductor can be pulled out into the vacuum when they are subjected to high electrical tensions while being heated hot enough to overtake their work functions.This principle has led to the great success of the so-called vacuum tubes in the early 20 th century.To date,major challenges still remain in the miniaturization of a vacuum channel transistor for on-chip integration in modern solid-state integrated circuits.Here,by introducing nano-sized vacuum gaps(~200 nm)in a van der Waals heterostructure,we successfully fabricated a one-dimensional(1 D)edge-to-edge thermionic emission vacuum tube using graphene as the filament.With the increasing collector voltage,the emitted current exhibits a typical rectifying behavior,with the maximum emission current reaching 200 p A and an ON-OFF ratio of 10;.In addition,it is found that the maximum emission current is proportional to the number of the layers of graphene.Our results expand the research of nano-sized vacuum tubes to an unexplored physical limit of 1 D edge-to-edge emission,and hold great promise for future nano-electronic systems based on it.展开更多
基金financial support from Region Hauts-de-France,FEDER,and Electricité de France(EDF)through PEROVSTAB programfinancial support from the IR-RMN-THC FR-3050 CNRS France for conducting solid-state NMR measurements.P.R.and G.N.M.R+1 种基金financial support from University of Lille and région Hauts-de-France.F.S“IMPRESSIVE”project which received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement number 826013.
文摘Environmental stability is a major bottleneck of perovskite solar cells.Only a handful of studies are investigating the effect of moisture on the structural degradation of the absorber.They mostly rely on ex situ experiments and on completely degraded samples,which restrict the assessment on initial and final stage.By combining in situ X-ray diffraction under controlled 85%relative humidity,and live observations of the water-induced degradation using liquid-cell transmission electron microscopy,we reveal two competitive degradation paths leading on one hand to the decomposition of state-of-theart mixed cation/anion(Cs_(0.05)(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17)I_(0.83))_(3)(CsMAFA)into PbI_(2) through a dissolution/recrystallization mechanism and,on the other hand,to a non-equilibrium phase segregation leading to CsPb_(2)Br_(5) and a Cesium-poor/iodide-rich Cs_(0.05)-x(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17-2y)I_(0.83)+2y)_(3) perovskite.This degradation mechanism is corroborated at atomic-scale resolution through solid-state ^(1)H and ^(133)Cs NMR analysis.Exposure to moisture leads to a film containing important heterogeneities in terms of morphology,photoluminescence intensities,and lifetimes.Our results provide new insights and consensus that complex perovskite compositions,though very performant as champion devices,are comparatively metastable,a trait that limits the chances to achieve long-term stability.
文摘Single crystal of Ba2SbGaSs has been synthesized by the high temperature solidstate reaction method. The compound crystallizes in the orthorhombic space group Pnma with a = 12.177(4), b = 8.880(3), c = 8.982(3) A, V= 971.4(6) A3, Z = 4, De = 4.284 g/cm3,μ = 14.487 mm-1, F(000) - 1096, the final R = 0.0171 and wR = 0.0384 for all data. The structure comprises an infinite one-dimensional 1∞[SbGaS5]4- anionic chain constructed from the GaS4 tetrahedra and the SbS5 polyhedra via sharing edge alternately. The paralleled 1∞[SbGaS5]4anionic chains engage with each other and form the two-dimensional Sb-Ga-S layer perpendicular to a-axis with the isolated Ba2+ cations arranged between layers. The IR spectrum and the UV-Vis spectrum have been investigated. Also, the first-principles band structure and density of states calculations indicate that the compound belongs to indirect semiconductor with the band gap of 2.1 eV, which is supported by the UV-Vis diffuse reflectance results.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.52177208,52171202,51971055 and 51871046)the National Safety Academic Fund(Nos.U1930208,U2030206 and U1730136).
文摘The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,wide electrochemical window,and stability to Li metal anode,are promising solid-state electrolyte(SSEs)materials for SSLMBs.However,Li/LLZTO interface issues including high interface resistance,inhomogeneous Li deposition,and Li dendrite growth have hindered the practical application of SSLMBs.Herein,a multi-functional Li–SnF_(2) composite anode with Li,LiF,and Li-Sn alloy was specifically designed and prepared.The composite anode improves the wettability to LLZTO,constructing an intimate contact interface between it and LLZTO.Meanwhile,ionic/electronic conductive paths in situ formed at the interface can effectively uniform Li deposition and suppress Li dendrite.The solid-state symmetric cell exhibits low interface resistance(11Ω·cm^(2)) and high critical current density(1.3 mA·cm^(−2))at 25℃.The full SSLMB based on LiFePO_(4) or LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode also shows stable cycling performance and high rate capability.This work provides a new composite anode strategy for achieving high-energy density and high-safety SSLMBs.
文摘Over 70 years have passed since the first transistor was invented at Bell Labs,New Jersey,USA on 16 December 1947 by William Shockley,John Bardeen and Walter Brattain,which was perhaps the most important electronics event of the 20th century as it later made possible the integrated circuit(IC)and microprocessor that are the basis of modern electronics.The first electronic products were made from individual transistors but before long engineers learnt how to integrate several simultaneously,giving birth to the first IC in 1957.Industry development thereafter followed a predominantly evolutionary process with the number of transistors on an IC increasing exponentially each year,a process known as Moore’s Law after one of the semiconductor industry’s key founding fathers.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.52201277).
文摘Solid-state batteries(SSBs)have received widespread attention with their high safety and high energy density characteristics.However,solid-solid contacts in the internal electrode material and the electrode material/solid electrolyte(SE)interfaces,as well as the severe electrochemo-mechanical effects caused by the internal stress due to the volume change of the active material,these problems hinder ion/electron transport within the SSBs,which significantly deteriorates the electrochemical performance.Applying fabrication pressures and stack pressures are effective measures to improve solid-solid contact and solve electrochemo-mechanical problems.Herein,the influences of different pressures on cathode material,anode material,SEs,and electrode/SEs interface are briefly summarized from the perspective of interface ion diffusion,transmission of electrons and ions in internal particles,current density and ion diffusion kinetics,and the volume changes of Li^(+)stripping/plating based on two physical contact models,and point out the direction for the future research direction of SSBs and advancing industrialization by building the relationship between pressures and SSBs electrochemistry.
基金This research was supported by the National Natural Science Foundation of China(Nos.52072323,52172240,and 11874307)Natural Science Foundation of Jiangxi Province(No.20192ACBL20048)+3 种基金Natural Science Foundation of Jiangsu Province(No.BK20200800)Scientific Research Project of Fujian Provincial Department of Education(No.JAT191150)the Fundamental Research Funds for the Central Universities(No.20720200075)the Double-First Class Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University.
文摘An interlayer is usually employed to tackle the interfacial instability issue between solid electrolytes(SEs)and Li metal caused by the side reaction.However,the failure mechanism of the ionic conductor interlayers,especially the influence from electron penetration,remains largely unknown.Herein,using Li1.3Al0.3Ti1.7(PO4)3(LATP)as the model SE and LiF as the interlayer,we use metal semiconductor contact barrier theory to reveal the failure origin of Li/LiF@LATP interface based on the calculation results of density functional theory(DFT),in which electrons can easily tunnel through the LiF grain boundary with F vacancies due to its narrow barrier width against electron injection,followed by the reduction of LATP.Remarkably,an Al-LiF bilayer between Li/LATP is found to dramatically promote the interfacial stability,due to the highly increased barrier width and homogenized electric field at the interface.Consequently,the Li symmetric cells with Al-LiF bilayer can exhibit excellent cyclability of more than 2,000 h superior to that interlayered by LiF monolayer(~860 h).Moreover,the Li/Al-LiF@LATP/LiFePO4 solid-state batteries deliver a capacity retention of 83.2%after 350 cycles at 0.5 C.Our findings emphasize the importance of tuning the electron transport behavior by optimizing the potential barrier for the interface design in high-performance solid-state batteries.
基金National Natural Science Foudation of ChinaNatural Science Foudation of Zhejiang Province
文摘The device structure and technical processings of quasi-planar self-aligned silicon avalanche electron emission array arc introduced. The processing step at the edge of electron emission region is about 10nm only and the width of self-aligned current channel of shallow As implantation is about 3μm. Its I-V characteristics show a larger linear region and lower series resistance than that of the previous silicon avalanche electron emission devices. Some of the electron emission characteristics are also discussed in this paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.12004389,12004288,and 12104462)the China Postdoctoral Science Foundation(Grant Nos.2020M68036 and 2021T140430)+1 种基金the support from the Joint Research Fund of Liaoning-Shenyang National Laboratory for Materials Science(Grant No.2019JH3/30100031)the support from the IMR Innovation Fund(Grant No.2021-PY17)。
文摘Thermionic emission is a tunneling phenomenon,which depicts that electrons on the surface of a conductor can be pulled out into the vacuum when they are subjected to high electrical tensions while being heated hot enough to overtake their work functions.This principle has led to the great success of the so-called vacuum tubes in the early 20 th century.To date,major challenges still remain in the miniaturization of a vacuum channel transistor for on-chip integration in modern solid-state integrated circuits.Here,by introducing nano-sized vacuum gaps(~200 nm)in a van der Waals heterostructure,we successfully fabricated a one-dimensional(1 D)edge-to-edge thermionic emission vacuum tube using graphene as the filament.With the increasing collector voltage,the emitted current exhibits a typical rectifying behavior,with the maximum emission current reaching 200 p A and an ON-OFF ratio of 10;.In addition,it is found that the maximum emission current is proportional to the number of the layers of graphene.Our results expand the research of nano-sized vacuum tubes to an unexplored physical limit of 1 D edge-to-edge emission,and hold great promise for future nano-electronic systems based on it.