期刊文献+
共找到486篇文章
< 1 2 25 >
每页显示 20 50 100
A novel integrated microfluidic chip for on-demand electrostatic droplet charging and sorting
1
作者 Jinhui Yao Chunhua He +5 位作者 Jianxin Wang Canfeng Yang Ye Jiang Zhiyong Liu Guanglan Liao Tielin Shi 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期31-42,共12页
On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sortin... On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations. 展开更多
关键词 Copper wire Droplet generation Droplet sorting microfluidic chips On-demand charging
下载PDF
Microfluidic-oriented synthesis of enriched iridium nanodots/carbon architecture for robust electrocatalytic nitrogen fixation
2
作者 Hengyuan Liu Xingjiang Wu +2 位作者 Yuhao Geng Xin Li Jianhong Xu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期544-555,共12页
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-... Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field. 展开更多
关键词 Iridium nanodots CARBON microfluidic technology Efficient synthesis Electrocatalytic nitrogen fixation
下载PDF
Microfluidic methods used in exosome isolation
3
作者 ADEM OZCELIK OZGE CEVIK 《BIOCELL》 SCIE 2023年第5期959-964,共6页
Exosomes are important biomarkers for clinical diagnosis.It is critical to isolate secreted exosomes from bodily fluids such as blood,saliva,breast milk,and urine for liquid biopsy applications.The field of microfluid... Exosomes are important biomarkers for clinical diagnosis.It is critical to isolate secreted exosomes from bodily fluids such as blood,saliva,breast milk,and urine for liquid biopsy applications.The field of microfluidics provides numerous benefits for biosample processing,diagnostics,and prognostics.Several microfluidics-based methods have been employed for the isolation and purification of exosomes in the last ten years.These microfluidic methods can be grouped into two categories based on passive and active isolation mechanisms.In the first group,inertial and hydrodynamic forces are employed to separate exosomes based on their size differences.In the second group,external forcefields are integrated into microfluidic platforms to actively isolate exosomes from other bioparticles.In this paper,the application of microfluidic methods in exosome isolation is discussed,and future perspectives on this field are highlighted. 展开更多
关键词 EXOSOME microfluidic exosome isolation microfluidicS Exosome separation
下载PDF
Neurotoxicity mechanism of aconitine in HT22 cells studied by microfluidic chip-mass spectrometry 被引量:3
4
作者 Yingrui Zhang Shiyu Chen +4 位作者 Fangfang Fan Ning Xu Xian-Li Meng Yi Zhang Jin-Ming Lin 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第1期88-98,共11页
Aconitine,a common and main toxic component of Aconitum,is toxic to the central nervous system.However,the mechanism of aconitine neurotoxicity is not yet clear.In this work,we had the hypothesis that excitatory amino... Aconitine,a common and main toxic component of Aconitum,is toxic to the central nervous system.However,the mechanism of aconitine neurotoxicity is not yet clear.In this work,we had the hypothesis that excitatory amino acids can trigger excitotoxicity as a pointcut to explore the mechanism of neurotoxicity induced by aconitine.HT22 cells were simulated by aconitine and the changes of target cell metabolites were real-time online investigated based on a microfluidic chip-mass spectrometry system.Meanwhile,to confirm the metabolic mechanism of aconitine toxicity on HT22 cells,the levels of lactate dehydrogenase,intracellular Ca^(2+),reactive oxygen species,glutathione and superoxide dismutase,and ratio of Bax/Bcl-2 protein were detected by molecular biotechnology.Integration of the detected results revealed that neurotoxicity induced by aconitine was associated with the process of excitotoxicity caused by glutamic acid and aspartic acid,which was followed by the accumulation of lactic acid and reduction of glucose.The surge of extracellular glutamic acid could further lead to a series of cascade reactions including intracellular Ca^(2+)overload and oxidative stress,and eventually result in cell apoptosis.In general,we illustrated a new mechanism of aconitine neurotoxicity and presented a novel analysis strategy that real-time online monitoring of cell metabolites can provide a new approach to mechanism analysis. 展开更多
关键词 ACONITINE Neurotoxicity mechanism HT22 cells Excitatory amino acids microfluidic chip-mass spectrometry
下载PDF
Microfluidic assisted 90%loading CL-20 spherical particles:Enhancing self-sustaining combustion performance 被引量:1
5
作者 Ling-feng Yang Xian-rui Shi +2 位作者 Chun-zhi Li Bo Wu Chong-hua Pei 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期176-184,共9页
The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-ener... The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-energy density,heat of formation and fast initial rate are considered as potential chemical fuels.As the high-energy density material,hexanitrohexaazaisowurtzitane(CL-20)often serves as secondary explosive with poor self-propagating combustion behaviors.Herein,90%loading CL-20 microspheres with uniform particle sizes are precisely prepared by microfluid method,which exhibit unique hierarchical structure.The morphology,thermal behaviors,as well as combustion performance were further investigated.The results demonstrated that as-prepared spherical particles exhibit prominent thermal compatibility,and the enhanced self-sustaining combustion performance.This work provides an efficient method achieving the uniform high-energy density particles with excellent self-sustaining combustion performance. 展开更多
关键词 microfluidicS HEXANITROHEXAAZAISOWURTZITANE Spherical particles Thermal behavior Self-sustaining combustion
下载PDF
Thermal and ignition properties of hexanitrostilbene(HNS) microspheres prepared by droplet microfluidics 被引量:1
6
作者 Rui-shan Han Fei-peng Lu +6 位作者 Fang Zhang Yan-lan Wang Mi Zhou Guo-sheng Qin Jian-hua Chen Hai-fu Wang En-yi Chu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期166-173,共8页
HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were... HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were prepared using droplet microfluidics, and the particle size, morphology, specific surface area, thermal performance, and ignition threshold of the HNS microspheres were characterized and tested. The results shown that the prepared HNS microspheres have high sphericity, with an average particle size of 20.52 μm(coefficient of variation less than 0.2), and a specific surface area of 21.62 m^(2)/g(6.87 m^(2)/g higher than the raw material). Without changing the crystal structure and thermal stability of HNS-IV, this method significantly enhances the sensitivity of HNS-IV to short pulses and reduces the ignition threshold of the slapper detonator to below 1000 V. This will contribute to the miniaturization and low cost of EFI. 展开更多
关键词 microfluidicS HNS microspheres Thermal stability Ignition threshold
下载PDF
Green microfluidics in microchemical engineering for carbon neutrality 被引量:1
7
作者 Qingming Ma Jianhong Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期332-345,共14页
The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emiss... The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions.Developing high-efficient,low-cost,energy-efficient and eco-friendly microfluidicbased microchemical engineering is of great significance.Such kind of“green microfluidics”can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes,which represents the new power for the transformation and upgrading of chemical engineering industry.Here,a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented,with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality.Development of green microfluidic systems are categorized and reviewed,including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods,and the use of more biocompatible and nondestructive fluidic systems such as aqueous two-phase systems(ATPSs).Moreover,low carbon applications benefit from green microfluidics are summarized,ranging from separation and purification of biomolecules,high-throughput screening of chemicals and drugs,rapid and cost-effective detections,to synthesis of fine chemicals and novel materials.Finally,challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed. 展开更多
关键词 Microchemical engineering Carbon neutrality microfluidicS Aqueous two-phase systems(ATPSs) ENVIRONMENT Chemical processes
下载PDF
Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles
8
作者 Duanping Sun Ying Ma +3 位作者 Maoqiang Wu Zuanguang Chen Luyong Zhang Jing Lu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第4期340-354,共15页
Liquid biopsy is a technology that exhibits potential to detect cancer early,monitor therapies,and predict cancer prognosis due to its unique characteristics,including noninvasive sampling and real-time analysis.Circu... Liquid biopsy is a technology that exhibits potential to detect cancer early,monitor therapies,and predict cancer prognosis due to its unique characteristics,including noninvasive sampling and real-time analysis.Circulating tumor cells(CTCs)and extracellular vesicles(EVs)are two important components of circulating targets,carrying substantial disease-related molecular information and playing a key role in liquid biopsy.Aptamers are single-stranded oligonucleotides with superior affinity and specificity,and they can bind to targets by folding into unique tertiary structures.Aptamer-based microfluidic platforms offer new ways to enhance the purity and capture efficiency of CTCs and EVs by combining the advantages of microfluidic chips as isolation platforms and aptamers as recognition tools.In this review,we first briefly introduce some new strategies for aptamer discovery based on traditional and aptamer-based microfluidic approaches.Then,we subsequently summarize the progress of aptamer-based microfluidics for CTC and EV detection.Finally,we offer an outlook on the future directional challenges of aptamer-based microfluidics for circulating targets in clinical applications. 展开更多
关键词 APTAMER microfluidic Circulating tumor cells Extracellular vesicles BIOANALYSIS
下载PDF
Droplet microfluidic chip for precise monitoring of dynamic solution changes
9
作者 Cong Ma Zehang Gao +1 位作者 Jianlong Zhao Shilun Feng 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第3期55-63,共9页
In this work,an automated microfluidic chip that uses negative pressure to sample and analyze solutions with high temporal resolution was developed.The chip has a T-shaped channel for mixing the sample with a fluoresc... In this work,an automated microfluidic chip that uses negative pressure to sample and analyze solutions with high temporal resolution was developed.The chip has a T-shaped channel for mixing the sample with a fluorescent indicator,a flow-focusing channel for generating droplets in oil,and a long storage channel for incubating and detecting the droplets.By monitoring the fluorescence intensity of the droplets,the device could detect changes in solution accurately over time.The chip can generate droplets at frequencies of up to 42 Hz with a mixing ratio of 1:1 and a temporal resolution of 3–6 s.It had excellent linearity in detecting fluorescein solution in the concentration range 1–5μM.This droplet microfluidic chip provides several advantages over traditional methods,including high temporal resolution,stable droplet generation,and faster flow rates.This approach could be applied to monitoring calcium ions with a dynamic range from 102 to 107 nM and a detection limit of 10 nM. 展开更多
关键词 microfluidic chip Droplet sampling Fluorescence detection Calcium ion dynamics Temporal resolution
下载PDF
Computational and experimental investigations of a microfluidic mixer for efficient iodine extraction using carbon tetrachloride enhanced with gas bubbles
10
作者 Siddique Muhammad Kashif 孙林 李松晶 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期518-526,共9页
Numerous studies have been conducted on microfluidic mixers in various microanalysis systems, which elucidated the manipulation and control of small fluid volumes within microfluidic chips. These studies have demonstr... Numerous studies have been conducted on microfluidic mixers in various microanalysis systems, which elucidated the manipulation and control of small fluid volumes within microfluidic chips. These studies have demonstrated the ability to control fluids and samples precisely at the microscale. Microfluidic mixers provide high sensitivity for biochemical analysis due to their small volumes and high surface-to-volume ratios. A promising approach in drug delivery is the rapid microfluidic mixer-based extraction of elemental iodine at the micro level, demonstrating the versatility and the potential to enhance diagnostic imaging and accuracy in targeted drug delivery. Micro-mixing inside microfluidic chips plays a key role in biochemical analysis. The experimental study describes a microfluidic mixer for extraction of elemental iodine using carbon tetrachloride with a gas bubble mixing process. Gas bubbles are generated inside the microcavity to create turbulence and micro-vortices resulting in uniform mixing of samples. The bubble mixing of biochemical samples is analyzed at various pressure levels to validate the simulated results in computational fluid dynamics(CFD). The experimental setup includes a high-resolution camera and an air pump to observe the mixing process and volume at different pressure levels with time. The bubble formation is controlled by adjusting the inert gas flow inside the microfluidic chip. Microfluidic chip-based gas bubble mixing effects have been elaborated at various supplied pressures. 展开更多
关键词 microfluidic mixer iodine extraction CFD simulation micro-mixing properties
下载PDF
The feasible application ofmicrofluidic tissue/organ-on-a-chip as an impersonator of oral tissues and organs:a direction for future research
11
作者 Nima Farshidfar Sahar Assar +4 位作者 Mohammad Amin Amiri Sarina Sahmeddini Shahram Hamedani Moein Zarei Lobat Tayebi 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第4期478-506,共29页
Currently,cell culture models play a key role in determining cell behavior under various conditions.However,the accurate simulation of cellular behavior that imitates the body’s conditions remains a challenge.Therefo... Currently,cell culture models play a key role in determining cell behavior under various conditions.However,the accurate simulation of cellular behavior that imitates the body’s conditions remains a challenge.Therefore,to overcome this obstacle,three-dimensional cell culture models have been developed.Microfluidic tissues/organs-on-chips(TOOCs)are new devices that have provided the opportunity to culture cells in a medium that is almost similar to the physiological conditions of the body.TOOCs can be designed in simple or complex models,which are mostly fabricated by soft lithography.These novel structures have been developed to mimic the conditions of various tissues and organs;however,microfluidic models for oral and dental tissues have not yet been widely used.The application of TOOCs for oral tissues/organs can provide the opportunity to study cell interactions with biomaterials used in dentistry.Furthermore,TOOCs can provide the opportunity to study the cellular interactions and developmental stages of oral tissues/organs more accurately.This review of the current advances in the field of TOOC development for oral tissues provides a comprehensive understanding of this burgeoning concept,shows the progress and applications of these novel models in the imitation of oral tissues/organs thus far,and reveals the limitations that TOOCs confront.Moreover,it suggests further perspectives for future applications. 展开更多
关键词 microfluidics Tissue-on-a-chip Organ-on-a-chip Tooth-on-a-chip Oral mucosa-on-a-chip Salivary gland-on-a-chip
下载PDF
An integrated microfluidics platform with high-throughput single-cell cloning array and concentration gradient generator for efficient cancer drug effect screening
12
作者 Biao Wang Bang-Shun He +6 位作者 Xiao-Lan Ruan Jiang Zhu Rui Hu Jie Wang Ying Li Yun-Huang Yang Mai-Li Liu 《Military Medical Research》 SCIE CAS CSCD 2023年第3期325-341,共17页
Background:Tumor cell heterogeneity mediated drug resistance has been recognized as the stumbling block of cancer treatment.Elucidating the cytotoxicity of anticancer drugs at single-cell level in a high-throughput wa... Background:Tumor cell heterogeneity mediated drug resistance has been recognized as the stumbling block of cancer treatment.Elucidating the cytotoxicity of anticancer drugs at single-cell level in a high-throughput way is thus of great value for developing precision therapy.However,current techniques suffer from limitations in dynamically characterizing the responses of thousands of single cells or cell clones presented to multiple drug conditions.Methods:We developed a new microfluidics-based“SMART”platform that is Simple to operate,able to generate a Massive single-cell array and Multiplex drug concentrations,capable of keeping cells Alive,Retainable and Trackable in the microchambers.These features are achieved by integrating a Microfluidic chamber Array(4320 units)and a sixConcentration gradient generator(MAC),which enables highly efficient analysis of leukemia drug effects on single cells and cell clones in a high-throughput way.Results:A simple procedure produces 6 on-chip drug gradients to treat more than 3000 single cells or single-cell derived clones and thus allows an efficient and precise analysis of cell heterogeneity.The statistic results reveal that Imatinib(Ima)and Resveratrol(Res)combination treatment on single cells or clones is much more efficient than Ima or Res single drug treatment,indicated by the markedly reduced half maximal inhibitory concentration(IC50).Additionally,single-cell derived clones demonstrate a higher IC_(50) in each drug treatment compared to single cells.Moreover,primary cells isolated from two leukemia patients are also found with apparent heterogeneity upon drug treatment on MAC.Conclusions:This microfluidics-based“SMART”platform allows high-throughput single-cell capture and culture,dynamic drug-gradient treatment and cell response monitoring,which represents a new approach to efficiently investigate anticancer drug effects and should benefit drug discovery for leukemia and other cancers. 展开更多
关键词 microfluidicS Single-cell analysis LEUKEMIA High-throughput drug screening Single-cell cloning
下载PDF
In vitro study of emodin-induced nephrotoxicity in human renal glomerular endothelial cells on a microfluidic chip
13
作者 ZHUO YANG WEN QIN +5 位作者 DI CHEN JUNSHENG HUO JINGBO WANG LIYUAN WANG QIN ZHUO JIYONG YIN 《BIOCELL》 SCIE 2023年第1期125-131,共7页
Emodin is an effective component of rhubarb with positive pharmacological effects on human health.However,it is also toxic to different cells or tissues to varying degrees.The effects of emodin on glomerular endotheli... Emodin is an effective component of rhubarb with positive pharmacological effects on human health.However,it is also toxic to different cells or tissues to varying degrees.The effects of emodin on glomerular endothelial cells(GECs)remain to be tested,and the documented works were always performed in vitro and hardly reflect the real physiological situation.To study the effects of emodin on GECs in a biomimetic environment,we utilized a microfluidic chip to assess the physiological reaction of human renal glomerular endothelial cells to various concentrations of emodin in this work.The results showed that emodin caused cytotoxicity,impaired glomerular filtration barrier integrity to macromolecules,and increased barrier permeability in a dose-dependent manner.With the increase in emodin concentration,the concentration of the pro-inflammatory cytokine tumor necrosis factor-α,interleukin(IL)-6,transforming growth factor-β1,and monocyte chemoattractant protein(MCP-1)increased while the production of inflammatory cytokine IL-6 first increased and then decreased with the increase in emodin concentration.Our findings shed new light on emodin-induced nephrotoxicity and provide insights for the application of microfluidic chip devices to reveal drug-cell interactions. 展开更多
关键词 EMODIN NEPHROTOXICITY HRGECs microfluidic chip
下载PDF
One-step rapid preparation of CL-20/TNT co-crystal assembly and spheroidized coating based on droplet microfluidic technology
14
作者 Jiahui Shi Bidong Wu +4 位作者 Jinqiang Zhou Dawei Ren Dongxu Zhang Chongwei An Jingyu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期251-262,共12页
Energetic materials pose challenges in preparation and handling due to their contradictory properties of high-energy and low-sensitivity.The emergence of co-crystal explosives is a new opportunity to change this situa... Energetic materials pose challenges in preparation and handling due to their contradictory properties of high-energy and low-sensitivity.The emergence of co-crystal explosives is a new opportunity to change this situation.If the co-crystal explosive is coated into spherical particles with uniform particle size distribution,this contradiction can be further reduced.Therefore,binder-coated hexanitrohexaazaisowurtzitane/2,4,6-trinitrotoluene(CL-20/TNT)co-crystal microspheres were prepared by droplet microfluidic technology in this work.The coating effects of different binder formulations of nitrocellulose(NC)and NC/fluorine rubber(F2604)on the co-crystal spheres were studied.The scanning electron microscopy(SEM)results showed that the use of droplet microfluidic technology with the above binders can provide co-crystal microspheres with regular spherical morphology,uniform particle size distribution and good dispersion.X-ray diffraction(XRD),fourier-transform infrared(FT-IR),differential scanning calorimetry(DSC)and thermo-gravimetric(TG)methods were employed to compare the properties of the co-crystal microspheres,raw material and pure co-crystal.The formation of CL-20/TNT co-crystal in the microspheres was confirmed,and the co-crystal microspheres exhibited better thermal stability than the raw material and pure co-crystal.In addition,the mechanical sensitivity and combustion performance of the co-crystal microspheres were further studied.The results showed that the co-crystal microspheres were more insensitive than CL-20 and pure co-crystal,and displayed excellent self-sustained combustion performance and theoretical detonation performance.This study provides a new method for the fast,simple and one-step preparation of CL-20/TNT co-crystal microspheres,with binder coating,uniform particle size distribution,and excellent performance level. 展开更多
关键词 Droplet microfluidics CL-20 TNT CO-CRYSTAL Spherical coating
下载PDF
Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection:A review
15
作者 Changhong Nie Ibrahim Shaw Chuanpin Chen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第12期1429-1451,共23页
With the continuous discovery and research of predictive cancer-related biomarkers,liquid biopsy shows great potential in cancer diagnosis.Surface-enhanced Raman scattering(SERS)and microfluidic technology have receiv... With the continuous discovery and research of predictive cancer-related biomarkers,liquid biopsy shows great potential in cancer diagnosis.Surface-enhanced Raman scattering(SERS)and microfluidic technology have received much attention among the various cancer biomarker detection methods.The former has ultrahigh detection sensitivity and can provide a unique fingerprint.In contrast,the latter has the characteristics of miniaturization and integration,which can realize accurate control of the detection samples and high-throughput detection through design.Both have the potential for point-of-care testing(POCT),and their combination(lab-on-a-chip SERS(LoC-SERS))shows good compatibility.In this paper,the basic situation of circulating proteins,circulating tumor cells,exosomes,circulating tumor DNA(ctDNA),and microRNA(miRNA)in the diagnosis of various cancers is reviewed,and the detection research of these biomarkers by the LoC-SERS platform in recent years is described in detail.At the same time,the challenges and future development of the platform are discussed at the end of the review.Summarizing the current technology is expected to provide a reference for scholars engaged in related work and interested in this field. 展开更多
关键词 Cancer biomarkers microfluidic technology Surface-enhanced Raman scattering
下载PDF
Junction matters in hydraulic circuit bio-design of microfluidics
16
作者 Yao Lin Dongliang He +9 位作者 Zerui Wu Yurou Yao Zhanhao Zhang Yuheng Qiu Shan Wei Guangzhu Shang Xingyue Lei Ping Wu Weiping Ding Liqun He 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第1期38-50,共13页
Microfluidic channels are at micrometer scales;thus,their fluid flows are laminar,resulting in the linear dependence of pressure drop on flow rate in the length of the channel.The ratio of the pressure drop to flow ra... Microfluidic channels are at micrometer scales;thus,their fluid flows are laminar,resulting in the linear dependence of pressure drop on flow rate in the length of the channel.The ratio of the pressure drop to flow rate,referred to as resistance,depends on channel size and dynamic viscosity.Usually,a microfluidic chip is analogous to an electric circuit in design,but the design is adjusted to optimize channel size.However,whereas voltage loss is negligible at the nodes of an electric circuit,hydraulic pressure drops at the nodes of microfluidic chips by a magnitude are comparable to the pressure drops in the straight channels.Here,we prove by experiment that one must fully consider the pressure drops at nodes so as to accurately design a precise microfluidic chip.In the process,we numerically calculated the pressure drops at hydraulic nodes and list their resistances in the range of flows as concerned.We resorted to machine learning to fit the calculated results for complex junctions.Finally,we obtained a library of node resistances for common junctions and used them to design three established chips that work for single-cell analysis and for precision allocation of solutes(in gradient and averaging concentration microfluidic networks).Endothelial cells were stimulated by generating concentrations of adriamycin hydrochloride from the last two microfluidic networks,and we analyzed the response of endothelial cells.The results indicate that consideration of junction resistances in design calculation brings experimental results closer to the design values than usual.This approach may therefore contribute to providing a platform for the precise design of organ chips. 展开更多
关键词 JUNCTIONS Hydraulics microfluidic chip design
下载PDF
A deep-reinforcement learning approach for optimizing homogeneous droplet routing in digital microfluidic biochips
17
作者 Basudev Saha Bidyut Das Mukta Majumder 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第2期1-12,共12页
Over the past two decades,digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis,drug discovery,and immunoassays,amo... Over the past two decades,digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis,drug discovery,and immunoassays,among other areas.However,for complex bioassays,finding routes for the transportation of droplets in an electrowetting-on-dielectric digital biochip while maintaining their discreteness is a challenging task.In this study,we propose a deep reinforcement learning-based droplet routing technique for digital microfluidic biochips.The technique is implemented on a distributed architecture to optimize the possible paths for predefined source–target pairs of droplets.The actors of the technique calculate the possible routes of the source–target pairs and store the experience in a replay buffer,and the learner fetches the experiences and updates the routing paths.The proposed algorithm was applied to benchmark suitesⅠand Ⅲ as two different test benches,and it achieved significant improvements over state-of-the-art techniques. 展开更多
关键词 Digital microfluidics BIOCHIP Droplet routing Fluidic constraints Deep learning Reinforcement learning
下载PDF
A digital microfluidic single-cell manipulation systemoptimized by extending-depth-of-field device
18
作者 Qiushu Chen Qi Meng +8 位作者 Yuzhe Liu Xiangan Long Yawei Kong Longfang Yao Liwen Chen Chuanyong Wu Kaiqin Chu Lan Mi Jiong Ma 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第3期43-55,共13页
Microfuidic systems have been widely utilized in high-throughput biology analysis,but thedificulties in iquid manipulation and cell cultivation limit its application.This work has developed a new digital microfluidic(... Microfuidic systems have been widely utilized in high-throughput biology analysis,but thedificulties in iquid manipulation and cell cultivation limit its application.This work has developed a new digital microfluidic(DMF)system for on-demand droplet control.By adopting anextending-depth-of-field(EDoF)phase modulator to the optical system,the entire depth of themicrofluidic channel can be covered in one image without any refocusing process,ensuring that 95%of the particles in the droplet are captured within three shots together with shaking pro-cesses.With this system,suspension droplets are generated and droplets containing only oneyeast cll can be recognized,then each single cell is cultured in the array of the chip.Byobservingtheir growth in cell numbers and the green fluorescence protein(GFP)production via fluorescence imaging,the single cell with the highest production can be identified.The results haveproved the heterogeneity of yeast cells,and showed that the combined system can be applied forrapid single-cell sorting,cultivation,and analysis. 展开更多
关键词 Single-cell analysis digital microfluidic(DMF) extending-depth-of-field system
下载PDF
Tunable microfluidic chip for single-cell deformation study
19
作者 Ruiyun Zhang Xuexin Duan +3 位作者 Shuaihua Zhang Wenlan Guo Chen Sun Ziyu Han 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第2期25-32,共8页
Microfluidic phenotyping methods have been of vital importance for cellular characterization,especially for evaluating single cells.In order to study the deformability of a single cell,we devised and tested a tunable ... Microfluidic phenotyping methods have been of vital importance for cellular characterization,especially for evaluating single cells.In order to study the deformability of a single cell,we devised and tested a tunable microfluidic chip-based method.A pneumatic polymer polydimethylsiloxane(PDMS)membrane was designed and fabricated abutting a single-cell trapping structure,so the cell could be squeezed controllably in a lateral direction.Cell contour changes under increasing pressure were recorded,enabling the deformation degree of different types of single cell to be analyzed and compared using computer vision.This provides a new perspective for studying mechanical properties of cells at the single cell level. 展开更多
关键词 microfluidicS Cell deformation Single cell Computer vision
下载PDF
Advances in microfluidic chips based on islet hormone-sensing techniques
20
作者 Wei Li You-Fan Peng 《World Journal of Diabetes》 SCIE 2023年第1期17-25,共9页
Diabetes mellitus is a global health problem resulting from islet dysfunction or insulin resistance.The mechanisms of islet dysfunction are still under investigation.Islet hormone secretion is the main function of isl... Diabetes mellitus is a global health problem resulting from islet dysfunction or insulin resistance.The mechanisms of islet dysfunction are still under investigation.Islet hormone secretion is the main function of islets,and serves an important role in the homeostasis of blood glucose.Elucidating the detailed mechanism of islet hormone secretome distortion can provide clues for the treatment of diabetes.Therefore,it is crucial to develop accurate,real-time,laborsaving,high-throughput,automated,and cost-effective techniques for the sensing of islet secretome.Microfluidic chips,an elegant platform that combines biology,engineering,computer science,and biomaterials,have attracted tremendous interest from scientists in the field of diabetes worldwide.These tiny devices are miniatures of traditional experimental systems with more advantages of timesaving,reagent-minimization,automation,high-throughput,and online detection.These features of microfluidic chips meet the demands of islet secretome analysis and a variety of chips have been designed in the past 20 years.In this review,we present a brief introduction of microfluidic chips,and three microfluidic chipsbased islet hormone sensing techniques.We focus mainly on the theory of these techniques,and provide detailed examples based on these theories with the hope of providing some insights into the design of future chips or whole detection systems. 展开更多
关键词 microfluidic chips Islet hormone SECRETOME DIABETES SENSING
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部