Tubular microfibers have recently attracted extensive interest for applications in tissue engineering.However,the fabrication of tubular fibers with intricate hierarchical structures remains a major challenge.Here,we ...Tubular microfibers have recently attracted extensive interest for applications in tissue engineering.However,the fabrication of tubular fibers with intricate hierarchical structures remains a major challenge.Here,we present a novel one-step microfluidic spinning method to generate bio-inspired screwed conduits(BSCs).Based on the microfluidic rope-coiling effect,a viscous hydrogel precursor is first curved into a helix stream in the channel,and then consecutively packed as a hollow structured stream and gelated into a screwed conduit(SC)via ionic and covalent crosslinking.By taking advantage of the excellent fluid-controlling ability of microfluidics,various tubes with diverse structures are fabricated via simple control over fluid velocities and multiple microfluidic device designs.The perfusability and permeability results,as well as the encapsulation and culture of human umbilical vein endothelial cells(HUVECs),human pulmonary alveolar epithelial cells(HPAs),and myogenic cells(C2C12),demonstrate that these SCs have good perfusability and permeability and the ability to induce the formation of functional biostructures.These features support the uniqueness and potential applications of these BSCs as biomimetic blood vessels and bronchiole tissues in combination with tissue microstructures,with likely application possibilities in biomedical engineering.展开更多
Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocy...Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocytes-associated self-repairing process in damaged tissue,we present novel biomimetic erythrocyte-like microparticles(ELMPs).These ELMPs,which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus,hemoglobin,and growth factors(GFs),are generated by using a microfluidic electrospray.As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen,they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion,stimulating angiogenesis,and adjusting the release profile of cargoes.Based on these features,we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration.Thus,we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering.展开更多
Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past...Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past three decades,significant progress in materials science,microfabrication,and various applications has boosted the development of promising functional microfluidic devices.In this review,the recent progress on novel microfluidic devices with various functions and applications is presented.First,the theory and numerical methods for studying the performance of microfluidic devices are briefly introduced.Then,materials and fabrication methods of functional microfluidic devices are summarized.Next,the recent significant advances in applications of microfluidic devices are highlighted,including heat sinks,clean water production,chemical reactions,sensors,biomedicine,capillaric circuits,wearable electronic devices,and microrobotics.Finally,perspectives on the challenges and future developments of functional microfluidic devices are presented.This review aims to inspire researchers from various fields engineering,materials,chemistry,mathematics,physics,and more—to collaborate and drive forward the development and applications of functional microfluidic devices,specifically for achieving carbon neutrality.展开更多
To enable the detection and modulation of modularized neural networks in vitro,this study proposes a microfluidic microelectrode array chip for the cultivation,compartmentalization,and control of neural cells.The chip...To enable the detection and modulation of modularized neural networks in vitro,this study proposes a microfluidic microelectrode array chip for the cultivation,compartmentalization,and control of neural cells.The chip was designed based on the specific structure of neurons and the requirements for detection and modulation.Finite-element analysis of the chip’s flow field was conducted using the COMSOL Multiphysics software,and the simulation results show that the liquid within the chip can flow smoothly,ensuring stable flow fields that facilitate the uniform growth of neurons within the microfluidic channels.By employing MEMS technology in combination with nanomaterial modification techniques,the microfluidic microelectrode array chip was fabricated successfully.Primary hippocampal neurons were cultured on the chip,forming a well-defined neural network.Spontaneous electrical activity of the detected neurons was recorded,exhibiting a 23.7%increase in amplitude compared to neuronal discharges detected on an open-field microelectrode array.This study provides a platform for the precise detection and modulation of patterned neuronal growth in vitro,potentially serving as a novel tool in neuroscience research.展开更多
In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increas...In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals.展开更多
Surface-enhanced Raman spectroscopy(SERS)microfluidic system,which enables rapid detection of chemical and biological analytes,offers an effective platform to monitor various food contaminants and disease diagnoses.Th...Surface-enhanced Raman spectroscopy(SERS)microfluidic system,which enables rapid detection of chemical and biological analytes,offers an effective platform to monitor various food contaminants and disease diagnoses.The efficacy of SERS microfluidic systems is greatly dependent on the sensitivity and reusability of SERS detection substrates to ensure repeated use for prolonged periods.This study proposed a novel process of femtosecond laser nanoparticle array(NPA)implantation to achieve homogeneous forward transfer of gold NPA on a flexible polymer film and accurately integrated it within microfluidic chips for SERS detection.The implanted Au-NPA strips show a remarkable electromagnetic field enhancement with the factor of 9×108 during SERS detection of malachite green(MG)solution,achieving a detection limit lower than 10 ppt,far better than most laser-prepared SERS substrates.Furthermore,Au-NPA strips show excellent reusability after several physical and chemical cleaning,because of the robust embedment of laser-implanted NPA in flexible substrates.To demonstrate the performance of Au-NPA,a SERS microfluidic system is built to monitor the online oxidation reaction between MG/NaClO reactants,which helps infer the reaction path.The proposed method of nanoparticle implantation is more effective than the direct laser structuring technique.It provides better performance for SERS detection,robustness of detection,and substrate flexibility and has a wider range of applications for microfluidic systems without any negative impact.展开更多
On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sortin...On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.展开更多
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
Multiphase microfluidic has emerged as a powerful platform to produce novel materials with tailor-designed functionalities,as microfluidic fabrication provides precise controls over the size,component,and structure of...Multiphase microfluidic has emerged as a powerful platform to produce novel materials with tailor-designed functionalities,as microfluidic fabrication provides precise controls over the size,component,and structure of resultant materials.Recently,functional materials with well-defined micro-/nanostructures fabricated by microfluidics find important applications as environmental and energy materials.This review first illustrated in detail how different structures or shapes of droplet and jet templates are formed by typical configurations of microfluidic channel networks and multiphase flow systems.Subsequently,recent progresses on several representative energy and environmental applications,such as water purification,water collecting and energy storage,were overviewed.Finally,it is envisioned that integrating microfluidics and other novel materials will play increasing important role in contributing environmental remediation and energy storage in near future.展开更多
The selection of the most motile and functionally competent sperm is an essential basis for in vitro fertilization(IVF)and normal embryonic development.Widely adopted clinical approaches for sperm sample processing in...The selection of the most motile and functionally competent sperm is an essential basis for in vitro fertilization(IVF)and normal embryonic development.Widely adopted clinical approaches for sperm sample processing intensely rely on centrifugation and wash steps that may induce mechanical damage and oxidative stress to sperm.Although a few microfluidic sperm sorting devices may avoid these adverse effects by exploiting intrinsic guidance mechanisms of sperm swimming,none of these approaches have been fully validated by clinical-grade assessment criteria.In this study,a microfluidic sperm sorting device that enables the selection of highly motile and functional sperm via their intrinsic thermotaxis is presented.Bioinspired by the temperature microenvironment in the fallopian tube during natural sperm selection,a microfluidic device with controllable temperature gradients along the sperm separation channel was designed and fabricated.This study investigated the optimal temperature conditions for human sperm selection and fully characterized thermotaxis-selected sperm with 45 human sperm samples.Results indicated that a temperature range of 35–36.5℃along the separation channel significantly improves human sperm motility rate((85.25±6.28)%vs.(60.72±1.37)%;P=0.0484),increases normal sperm morphology rate((16.42±1.43)%vs.(12.55±0.88)%;P<0.0001),and reduces DNA fragmentation((7.44±0.79)%vs.(10.36±0.72)%;P=0.0485)compared to the nonthermotaxis group.Sperm thermotaxis is species-specific,and selected mouse sperm displayed the highest motility in response to a temperature range of 36–37.5℃ along the separation channel.Furthermore,IVF experiments indicated that the selected sperm permitted an increased fertilization rate and improved embryonic development from zygote to blastocyst.This microfluidic thermotaxic selection approach will be translated into clinical practice to improve the IVF success rate for patients with oligozoospermia and asthenozoospermia.展开更多
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c...High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.展开更多
Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes ametho...Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.展开更多
Aconitine,a common and main toxic component of Aconitum,is toxic to the central nervous system.However,the mechanism of aconitine neurotoxicity is not yet clear.In this work,we had the hypothesis that excitatory amino...Aconitine,a common and main toxic component of Aconitum,is toxic to the central nervous system.However,the mechanism of aconitine neurotoxicity is not yet clear.In this work,we had the hypothesis that excitatory amino acids can trigger excitotoxicity as a pointcut to explore the mechanism of neurotoxicity induced by aconitine.HT22 cells were simulated by aconitine and the changes of target cell metabolites were real-time online investigated based on a microfluidic chip-mass spectrometry system.Meanwhile,to confirm the metabolic mechanism of aconitine toxicity on HT22 cells,the levels of lactate dehydrogenase,intracellular Ca^(2+),reactive oxygen species,glutathione and superoxide dismutase,and ratio of Bax/Bcl-2 protein were detected by molecular biotechnology.Integration of the detected results revealed that neurotoxicity induced by aconitine was associated with the process of excitotoxicity caused by glutamic acid and aspartic acid,which was followed by the accumulation of lactic acid and reduction of glucose.The surge of extracellular glutamic acid could further lead to a series of cascade reactions including intracellular Ca^(2+)overload and oxidative stress,and eventually result in cell apoptosis.In general,we illustrated a new mechanism of aconitine neurotoxicity and presented a novel analysis strategy that real-time online monitoring of cell metabolites can provide a new approach to mechanism analysis.展开更多
The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-ener...The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-energy density,heat of formation and fast initial rate are considered as potential chemical fuels.As the high-energy density material,hexanitrohexaazaisowurtzitane(CL-20)often serves as secondary explosive with poor self-propagating combustion behaviors.Herein,90%loading CL-20 microspheres with uniform particle sizes are precisely prepared by microfluid method,which exhibit unique hierarchical structure.The morphology,thermal behaviors,as well as combustion performance were further investigated.The results demonstrated that as-prepared spherical particles exhibit prominent thermal compatibility,and the enhanced self-sustaining combustion performance.This work provides an efficient method achieving the uniform high-energy density particles with excellent self-sustaining combustion performance.展开更多
The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emiss...The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions.Developing high-efficient,low-cost,energy-efficient and eco-friendly microfluidicbased microchemical engineering is of great significance.Such kind of“green microfluidics”can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes,which represents the new power for the transformation and upgrading of chemical engineering industry.Here,a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented,with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality.Development of green microfluidic systems are categorized and reviewed,including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods,and the use of more biocompatible and nondestructive fluidic systems such as aqueous two-phase systems(ATPSs).Moreover,low carbon applications benefit from green microfluidics are summarized,ranging from separation and purification of biomolecules,high-throughput screening of chemicals and drugs,rapid and cost-effective detections,to synthesis of fine chemicals and novel materials.Finally,challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed.展开更多
HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were...HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were prepared using droplet microfluidics, and the particle size, morphology, specific surface area, thermal performance, and ignition threshold of the HNS microspheres were characterized and tested. The results shown that the prepared HNS microspheres have high sphericity, with an average particle size of 20.52 μm(coefficient of variation less than 0.2), and a specific surface area of 21.62 m^(2)/g(6.87 m^(2)/g higher than the raw material). Without changing the crystal structure and thermal stability of HNS-IV, this method significantly enhances the sensitivity of HNS-IV to short pulses and reduces the ignition threshold of the slapper detonator to below 1000 V. This will contribute to the miniaturization and low cost of EFI.展开更多
Energetic materials pose challenges in preparation and handling due to their contradictory properties of high-energy and low-sensitivity.The emergence of co-crystal explosives is a new opportunity to change this situa...Energetic materials pose challenges in preparation and handling due to their contradictory properties of high-energy and low-sensitivity.The emergence of co-crystal explosives is a new opportunity to change this situation.If the co-crystal explosive is coated into spherical particles with uniform particle size distribution,this contradiction can be further reduced.Therefore,binder-coated hexanitrohexaazaisowurtzitane/2,4,6-trinitrotoluene(CL-20/TNT)co-crystal microspheres were prepared by droplet microfluidic technology in this work.The coating effects of different binder formulations of nitrocellulose(NC)and NC/fluorine rubber(F2604)on the co-crystal spheres were studied.The scanning electron microscopy(SEM)results showed that the use of droplet microfluidic technology with the above binders can provide co-crystal microspheres with regular spherical morphology,uniform particle size distribution and good dispersion.X-ray diffraction(XRD),fourier-transform infrared(FT-IR),differential scanning calorimetry(DSC)and thermo-gravimetric(TG)methods were employed to compare the properties of the co-crystal microspheres,raw material and pure co-crystal.The formation of CL-20/TNT co-crystal in the microspheres was confirmed,and the co-crystal microspheres exhibited better thermal stability than the raw material and pure co-crystal.In addition,the mechanical sensitivity and combustion performance of the co-crystal microspheres were further studied.The results showed that the co-crystal microspheres were more insensitive than CL-20 and pure co-crystal,and displayed excellent self-sustained combustion performance and theoretical detonation performance.This study provides a new method for the fast,simple and one-step preparation of CL-20/TNT co-crystal microspheres,with binder coating,uniform particle size distribution,and excellent performance level.展开更多
In this work,an automated microfluidic chip that uses negative pressure to sample and analyze solutions with high temporal resolution was developed.The chip has a T-shaped channel for mixing the sample with a fluoresc...In this work,an automated microfluidic chip that uses negative pressure to sample and analyze solutions with high temporal resolution was developed.The chip has a T-shaped channel for mixing the sample with a fluorescent indicator,a flow-focusing channel for generating droplets in oil,and a long storage channel for incubating and detecting the droplets.By monitoring the fluorescence intensity of the droplets,the device could detect changes in solution accurately over time.The chip can generate droplets at frequencies of up to 42 Hz with a mixing ratio of 1:1 and a temporal resolution of 3–6 s.It had excellent linearity in detecting fluorescein solution in the concentration range 1–5μM.This droplet microfluidic chip provides several advantages over traditional methods,including high temporal resolution,stable droplet generation,and faster flow rates.This approach could be applied to monitoring calcium ions with a dynamic range from 102 to 107 nM and a detection limit of 10 nM.展开更多
Exosomes are important biomarkers for clinical diagnosis.It is critical to isolate secreted exosomes from bodily fluids such as blood,saliva,breast milk,and urine for liquid biopsy applications.The field of microfluid...Exosomes are important biomarkers for clinical diagnosis.It is critical to isolate secreted exosomes from bodily fluids such as blood,saliva,breast milk,and urine for liquid biopsy applications.The field of microfluidics provides numerous benefits for biosample processing,diagnostics,and prognostics.Several microfluidics-based methods have been employed for the isolation and purification of exosomes in the last ten years.These microfluidic methods can be grouped into two categories based on passive and active isolation mechanisms.In the first group,inertial and hydrodynamic forces are employed to separate exosomes based on their size differences.In the second group,external forcefields are integrated into microfluidic platforms to actively isolate exosomes from other bioparticles.In this paper,the application of microfluidic methods in exosome isolation is discussed,and future perspectives on this field are highlighted.展开更多
Currently,cell culture models play a key role in determining cell behavior under various conditions.However,the accurate simulation of cellular behavior that imitates the body’s conditions remains a challenge.Therefo...Currently,cell culture models play a key role in determining cell behavior under various conditions.However,the accurate simulation of cellular behavior that imitates the body’s conditions remains a challenge.Therefore,to overcome this obstacle,three-dimensional cell culture models have been developed.Microfluidic tissues/organs-on-chips(TOOCs)are new devices that have provided the opportunity to culture cells in a medium that is almost similar to the physiological conditions of the body.TOOCs can be designed in simple or complex models,which are mostly fabricated by soft lithography.These novel structures have been developed to mimic the conditions of various tissues and organs;however,microfluidic models for oral and dental tissues have not yet been widely used.The application of TOOCs for oral tissues/organs can provide the opportunity to study cell interactions with biomaterials used in dentistry.Furthermore,TOOCs can provide the opportunity to study the cellular interactions and developmental stages of oral tissues/organs more accurately.This review of the current advances in the field of TOOC development for oral tissues provides a comprehensive understanding of this burgeoning concept,shows the progress and applications of these novel models in the imitation of oral tissues/organs thus far,and reveals the limitations that TOOCs confront.Moreover,it suggests further perspectives for future applications.展开更多
基金supported by the National Key Research and Development Program of China(2020YFA0710800)the Key Program of National Natural Science Foundation of China(81930043and 82330055)the National Natural Science Foundation of China(82101184).
文摘Tubular microfibers have recently attracted extensive interest for applications in tissue engineering.However,the fabrication of tubular fibers with intricate hierarchical structures remains a major challenge.Here,we present a novel one-step microfluidic spinning method to generate bio-inspired screwed conduits(BSCs).Based on the microfluidic rope-coiling effect,a viscous hydrogel precursor is first curved into a helix stream in the channel,and then consecutively packed as a hollow structured stream and gelated into a screwed conduit(SC)via ionic and covalent crosslinking.By taking advantage of the excellent fluid-controlling ability of microfluidics,various tubes with diverse structures are fabricated via simple control over fluid velocities and multiple microfluidic device designs.The perfusability and permeability results,as well as the encapsulation and culture of human umbilical vein endothelial cells(HUVECs),human pulmonary alveolar epithelial cells(HPAs),and myogenic cells(C2C12),demonstrate that these SCs have good perfusability and permeability and the ability to induce the formation of functional biostructures.These features support the uniqueness and potential applications of these BSCs as biomimetic blood vessels and bronchiole tissues in combination with tissue microstructures,with likely application possibilities in biomedical engineering.
基金supported by the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(T2225003,52073060,and 61927805)+3 种基金the Nanjing Medical Science and Technique Development Foundation(ZKX21019)the Clinical Trials from Nanjing Drum Tower Hospital(2022-LCYJ-ZD-01)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120054)the Shenzhen Fundamental Research Program(JCYJ20190813152616459 and JCYJ20210324133214038).
文摘Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocytes-associated self-repairing process in damaged tissue,we present novel biomimetic erythrocyte-like microparticles(ELMPs).These ELMPs,which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus,hemoglobin,and growth factors(GFs),are generated by using a microfluidic electrospray.As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen,they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion,stimulating angiogenesis,and adjusting the release profile of cargoes.Based on these features,we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration.Thus,we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering.
基金supported by the National Natural Science Foundation of China(52006056)the Key-Area Research and Development Program of Guangdong Province(2020B090923003)The project was also partly supported by Natural Research Institute for Family Planning as well。
文摘Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past three decades,significant progress in materials science,microfabrication,and various applications has boosted the development of promising functional microfluidic devices.In this review,the recent progress on novel microfluidic devices with various functions and applications is presented.First,the theory and numerical methods for studying the performance of microfluidic devices are briefly introduced.Then,materials and fabrication methods of functional microfluidic devices are summarized.Next,the recent significant advances in applications of microfluidic devices are highlighted,including heat sinks,clean water production,chemical reactions,sensors,biomedicine,capillaric circuits,wearable electronic devices,and microrobotics.Finally,perspectives on the challenges and future developments of functional microfluidic devices are presented.This review aims to inspire researchers from various fields engineering,materials,chemistry,mathematics,physics,and more—to collaborate and drive forward the development and applications of functional microfluidic devices,specifically for achieving carbon neutrality.
基金sponsored by the National Natural Science Foundation of China (Grant Nos.61960206012,62121003,T2293731,62171434,61975206,61971400,and 61973292)the National Key Research and Development Program of China (Grant Nos.2022YFB3205602 and 2022YFC2402501)+1 种基金Major Program of Scientific and Technical Innovation 2030 (Grant No.2021ZD02016030)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No.GJJSTD20210004).
文摘To enable the detection and modulation of modularized neural networks in vitro,this study proposes a microfluidic microelectrode array chip for the cultivation,compartmentalization,and control of neural cells.The chip was designed based on the specific structure of neurons and the requirements for detection and modulation.Finite-element analysis of the chip’s flow field was conducted using the COMSOL Multiphysics software,and the simulation results show that the liquid within the chip can flow smoothly,ensuring stable flow fields that facilitate the uniform growth of neurons within the microfluidic channels.By employing MEMS technology in combination with nanomaterial modification techniques,the microfluidic microelectrode array chip was fabricated successfully.Primary hippocampal neurons were cultured on the chip,forming a well-defined neural network.Spontaneous electrical activity of the detected neurons was recorded,exhibiting a 23.7%increase in amplitude compared to neuronal discharges detected on an open-field microelectrode array.This study provides a platform for the precise detection and modulation of patterned neuronal growth in vitro,potentially serving as a novel tool in neuroscience research.
基金supported by the National Natural Science Foundation of China (No.52036006)。
文摘In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals.
基金The National Natural Science Foundation of China(Grant Numbers:U21A20135 and 52205488)‘Shuguang Program’supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(Grant Number:20SG12)Shanghai Jiao Tong University(Grant Number:2020QY11).
文摘Surface-enhanced Raman spectroscopy(SERS)microfluidic system,which enables rapid detection of chemical and biological analytes,offers an effective platform to monitor various food contaminants and disease diagnoses.The efficacy of SERS microfluidic systems is greatly dependent on the sensitivity and reusability of SERS detection substrates to ensure repeated use for prolonged periods.This study proposed a novel process of femtosecond laser nanoparticle array(NPA)implantation to achieve homogeneous forward transfer of gold NPA on a flexible polymer film and accurately integrated it within microfluidic chips for SERS detection.The implanted Au-NPA strips show a remarkable electromagnetic field enhancement with the factor of 9×108 during SERS detection of malachite green(MG)solution,achieving a detection limit lower than 10 ppt,far better than most laser-prepared SERS substrates.Furthermore,Au-NPA strips show excellent reusability after several physical and chemical cleaning,because of the robust embedment of laser-implanted NPA in flexible substrates.To demonstrate the performance of Au-NPA,a SERS microfluidic system is built to monitor the online oxidation reaction between MG/NaClO reactants,which helps infer the reaction path.The proposed method of nanoparticle implantation is more effective than the direct laser structuring technique.It provides better performance for SERS detection,robustness of detection,and substrate flexibility and has a wider range of applications for microfluidic systems without any negative impact.
基金The authors acknowledge the financial support from the NationalNatural Science Foundation ofChina(No.52275562)the Technology Innovation Fund of Huazhong University of Science and Technology(No.2022JYCXJJ015).
文摘On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
基金supported by National Natural Science Foundation of China(Grant No.52172283,22108147,22078197)Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012506,2023A1515011827)+1 种基金Shenzhen Science and Technology Program(JCYJ20220818095801003,RCYX20221008092902010)Shenzhen Natural Science Fund(the Stable Support Plan Program 20220810120421001).
文摘Multiphase microfluidic has emerged as a powerful platform to produce novel materials with tailor-designed functionalities,as microfluidic fabrication provides precise controls over the size,component,and structure of resultant materials.Recently,functional materials with well-defined micro-/nanostructures fabricated by microfluidics find important applications as environmental and energy materials.This review first illustrated in detail how different structures or shapes of droplet and jet templates are formed by typical configurations of microfluidic channel networks and multiphase flow systems.Subsequently,recent progresses on several representative energy and environmental applications,such as water purification,water collecting and energy storage,were overviewed.Finally,it is envisioned that integrating microfluidics and other novel materials will play increasing important role in contributing environmental remediation and energy storage in near future.
基金supported by the Key Research and Development Project of Hubei Province,China(No.2021BCA111)。
文摘The selection of the most motile and functionally competent sperm is an essential basis for in vitro fertilization(IVF)and normal embryonic development.Widely adopted clinical approaches for sperm sample processing intensely rely on centrifugation and wash steps that may induce mechanical damage and oxidative stress to sperm.Although a few microfluidic sperm sorting devices may avoid these adverse effects by exploiting intrinsic guidance mechanisms of sperm swimming,none of these approaches have been fully validated by clinical-grade assessment criteria.In this study,a microfluidic sperm sorting device that enables the selection of highly motile and functional sperm via their intrinsic thermotaxis is presented.Bioinspired by the temperature microenvironment in the fallopian tube during natural sperm selection,a microfluidic device with controllable temperature gradients along the sperm separation channel was designed and fabricated.This study investigated the optimal temperature conditions for human sperm selection and fully characterized thermotaxis-selected sperm with 45 human sperm samples.Results indicated that a temperature range of 35–36.5℃along the separation channel significantly improves human sperm motility rate((85.25±6.28)%vs.(60.72±1.37)%;P=0.0484),increases normal sperm morphology rate((16.42±1.43)%vs.(12.55±0.88)%;P<0.0001),and reduces DNA fragmentation((7.44±0.79)%vs.(10.36±0.72)%;P=0.0485)compared to the nonthermotaxis group.Sperm thermotaxis is species-specific,and selected mouse sperm displayed the highest motility in response to a temperature range of 36–37.5℃ along the separation channel.Furthermore,IVF experiments indicated that the selected sperm permitted an increased fertilization rate and improved embryonic development from zygote to blastocyst.This microfluidic thermotaxic selection approach will be translated into clinical practice to improve the IVF success rate for patients with oligozoospermia and asthenozoospermia.
基金the National Natural Science Foundation of China (Grant No.22105184)Research Fund of SWUST for PhD (Grant No.22zx7175)+1 种基金Sichuan Science and Technology Program (Grant No.2019ZDZX0013)Institute of Chemical Materials Program (Grant No.SXK-2022-03)for financial support。
文摘High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.
基金sponsored by the National Natural Science Foundation of China(No.52235007,YH)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004,YH)+3 种基金the NationalNatural Science Foundation of China(No.52305300,MJX)the Fellowship of China Postdoctoral Science Foundation(No.2022M722826,MJX)the National Natural Science Foundation of China(No.82203602,JW)the Zhejiang Provincial Natural Science Foundation of China(No.LQ22H160020,JW)。
文摘Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.
基金supported the National Natural Science Foundation of China(Grant Nos.:81973569,82130113,and 22034005)the National Key R&D Program of China(Grant No.:2021YFF0600700)the“Xinglin Scholars”Research Promotion Program of Chengdu University of Traditional Chinese Medicine(Grant No.:BSH2021009).
文摘Aconitine,a common and main toxic component of Aconitum,is toxic to the central nervous system.However,the mechanism of aconitine neurotoxicity is not yet clear.In this work,we had the hypothesis that excitatory amino acids can trigger excitotoxicity as a pointcut to explore the mechanism of neurotoxicity induced by aconitine.HT22 cells were simulated by aconitine and the changes of target cell metabolites were real-time online investigated based on a microfluidic chip-mass spectrometry system.Meanwhile,to confirm the metabolic mechanism of aconitine toxicity on HT22 cells,the levels of lactate dehydrogenase,intracellular Ca^(2+),reactive oxygen species,glutathione and superoxide dismutase,and ratio of Bax/Bcl-2 protein were detected by molecular biotechnology.Integration of the detected results revealed that neurotoxicity induced by aconitine was associated with the process of excitotoxicity caused by glutamic acid and aspartic acid,which was followed by the accumulation of lactic acid and reduction of glucose.The surge of extracellular glutamic acid could further lead to a series of cascade reactions including intracellular Ca^(2+)overload and oxidative stress,and eventually result in cell apoptosis.In general,we illustrated a new mechanism of aconitine neurotoxicity and presented a novel analysis strategy that real-time online monitoring of cell metabolites can provide a new approach to mechanism analysis.
基金supported by the Project of State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology(No.20fksy18)。
文摘The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-energy density,heat of formation and fast initial rate are considered as potential chemical fuels.As the high-energy density material,hexanitrohexaazaisowurtzitane(CL-20)often serves as secondary explosive with poor self-propagating combustion behaviors.Herein,90%loading CL-20 microspheres with uniform particle sizes are precisely prepared by microfluid method,which exhibit unique hierarchical structure.The morphology,thermal behaviors,as well as combustion performance were further investigated.The results demonstrated that as-prepared spherical particles exhibit prominent thermal compatibility,and the enhanced self-sustaining combustion performance.This work provides an efficient method achieving the uniform high-energy density particles with excellent self-sustaining combustion performance.
基金the supports of the National Science Foundation of China (22008130, 22025801)the China Postdoctoral Science Foundation (2020M682124)+1 种基金the Qingdao Postdoctoral Researchers Applied Research Project Foundation (RZ2000001426)the Scientific Research Foundation for Youth Scholars from Qingdao University (DC1900014265) for this work
文摘The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions.Developing high-efficient,low-cost,energy-efficient and eco-friendly microfluidicbased microchemical engineering is of great significance.Such kind of“green microfluidics”can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes,which represents the new power for the transformation and upgrading of chemical engineering industry.Here,a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented,with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality.Development of green microfluidic systems are categorized and reviewed,including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods,and the use of more biocompatible and nondestructive fluidic systems such as aqueous two-phase systems(ATPSs).Moreover,low carbon applications benefit from green microfluidics are summarized,ranging from separation and purification of biomolecules,high-throughput screening of chemicals and drugs,rapid and cost-effective detections,to synthesis of fine chemicals and novel materials.Finally,challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed.
基金financially supported by a foundation item from the China People’s Liberation Army General Armaments Department。
文摘HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were prepared using droplet microfluidics, and the particle size, morphology, specific surface area, thermal performance, and ignition threshold of the HNS microspheres were characterized and tested. The results shown that the prepared HNS microspheres have high sphericity, with an average particle size of 20.52 μm(coefficient of variation less than 0.2), and a specific surface area of 21.62 m^(2)/g(6.87 m^(2)/g higher than the raw material). Without changing the crystal structure and thermal stability of HNS-IV, this method significantly enhances the sensitivity of HNS-IV to short pulses and reduces the ignition threshold of the slapper detonator to below 1000 V. This will contribute to the miniaturization and low cost of EFI.
基金National Natural Science Foundation of China(Grant No.22005275)to provide fund for conducting experiments。
文摘Energetic materials pose challenges in preparation and handling due to their contradictory properties of high-energy and low-sensitivity.The emergence of co-crystal explosives is a new opportunity to change this situation.If the co-crystal explosive is coated into spherical particles with uniform particle size distribution,this contradiction can be further reduced.Therefore,binder-coated hexanitrohexaazaisowurtzitane/2,4,6-trinitrotoluene(CL-20/TNT)co-crystal microspheres were prepared by droplet microfluidic technology in this work.The coating effects of different binder formulations of nitrocellulose(NC)and NC/fluorine rubber(F2604)on the co-crystal spheres were studied.The scanning electron microscopy(SEM)results showed that the use of droplet microfluidic technology with the above binders can provide co-crystal microspheres with regular spherical morphology,uniform particle size distribution and good dispersion.X-ray diffraction(XRD),fourier-transform infrared(FT-IR),differential scanning calorimetry(DSC)and thermo-gravimetric(TG)methods were employed to compare the properties of the co-crystal microspheres,raw material and pure co-crystal.The formation of CL-20/TNT co-crystal in the microspheres was confirmed,and the co-crystal microspheres exhibited better thermal stability than the raw material and pure co-crystal.In addition,the mechanical sensitivity and combustion performance of the co-crystal microspheres were further studied.The results showed that the co-crystal microspheres were more insensitive than CL-20 and pure co-crystal,and displayed excellent self-sustained combustion performance and theoretical detonation performance.This study provides a new method for the fast,simple and one-step preparation of CL-20/TNT co-crystal microspheres,with binder coating,uniform particle size distribution,and excellent performance level.
基金We acknowledge support from the equipment research and development projects of the Chinese Academy of Sciences,“On-chip integrated optical biochemical detection key technology research and development team,”E11YTB1001.
文摘In this work,an automated microfluidic chip that uses negative pressure to sample and analyze solutions with high temporal resolution was developed.The chip has a T-shaped channel for mixing the sample with a fluorescent indicator,a flow-focusing channel for generating droplets in oil,and a long storage channel for incubating and detecting the droplets.By monitoring the fluorescence intensity of the droplets,the device could detect changes in solution accurately over time.The chip can generate droplets at frequencies of up to 42 Hz with a mixing ratio of 1:1 and a temporal resolution of 3–6 s.It had excellent linearity in detecting fluorescein solution in the concentration range 1–5μM.This droplet microfluidic chip provides several advantages over traditional methods,including high temporal resolution,stable droplet generation,and faster flow rates.This approach could be applied to monitoring calcium ions with a dynamic range from 102 to 107 nM and a detection limit of 10 nM.
基金funded by The Scientific and Technological Research Council of Turkiye(TUBITAK),Grant Number 221S982.
文摘Exosomes are important biomarkers for clinical diagnosis.It is critical to isolate secreted exosomes from bodily fluids such as blood,saliva,breast milk,and urine for liquid biopsy applications.The field of microfluidics provides numerous benefits for biosample processing,diagnostics,and prognostics.Several microfluidics-based methods have been employed for the isolation and purification of exosomes in the last ten years.These microfluidic methods can be grouped into two categories based on passive and active isolation mechanisms.In the first group,inertial and hydrodynamic forces are employed to separate exosomes based on their size differences.In the second group,external forcefields are integrated into microfluidic platforms to actively isolate exosomes from other bioparticles.In this paper,the application of microfluidic methods in exosome isolation is discussed,and future perspectives on this field are highlighted.
基金supported by the National Institute of Dental&Craniofacial Research of the National Institutes of Health(Nos.R15DE027533,R56 DE029191,and 3R15DE027533-01A1W1).
文摘Currently,cell culture models play a key role in determining cell behavior under various conditions.However,the accurate simulation of cellular behavior that imitates the body’s conditions remains a challenge.Therefore,to overcome this obstacle,three-dimensional cell culture models have been developed.Microfluidic tissues/organs-on-chips(TOOCs)are new devices that have provided the opportunity to culture cells in a medium that is almost similar to the physiological conditions of the body.TOOCs can be designed in simple or complex models,which are mostly fabricated by soft lithography.These novel structures have been developed to mimic the conditions of various tissues and organs;however,microfluidic models for oral and dental tissues have not yet been widely used.The application of TOOCs for oral tissues/organs can provide the opportunity to study cell interactions with biomaterials used in dentistry.Furthermore,TOOCs can provide the opportunity to study the cellular interactions and developmental stages of oral tissues/organs more accurately.This review of the current advances in the field of TOOC development for oral tissues provides a comprehensive understanding of this burgeoning concept,shows the progress and applications of these novel models in the imitation of oral tissues/organs thus far,and reveals the limitations that TOOCs confront.Moreover,it suggests further perspectives for future applications.