There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progre...There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progression.In acute CNS injury,brain microglia are among the first cells to respond and play a critical role in neural repair and regeneration.However,microglial activation can also impede CNS repair and amplify tissue damage,and phenotypic transformation may be responsible for this dual role.Mesenchymal stem cell(MSC)-derived exosomes(Exos)are promising therapeutic agents for the treatment of acute CNS injuries due to their immunomodulatory and regenerative properties.MSC-Exos are nanoscale membrane vesicles that are actively released by cells and are used clinically as circulating biomarkers for disease diagnosis and prognosis.MSC-Exos can be neuroprotective in several acute CNS models,including for stroke and traumatic brain injury,showing great clinical potential.This review summarized the classification of acute CNS injury disorders and discussed the prominent role of microglial activation in acute CNS inflammation and the specific role of MSC-Exos in regulating pro-inflammatory microglia in neuroinflammatory repair following acute CNS injury.Finally,this review explored the potential mechanisms and factors associated with MSCExos in modulating the phenotypic balance of microglia,focusing on the interplay between CNS inflammation,the brain,and injury aspects,with an emphasis on potential strategies and therapeutic interventions for improving functional recovery from early CNS inflammation caused by acute CNS injury.展开更多
The development of ischemic brain damage is dramatically affected by the immune system,whose activation occurs immediately after the insult and may last for several days,involving a complex interplay between soluble a...The development of ischemic brain damage is dramatically affected by the immune system,whose activation occurs immediately after the insult and may last for several days,involving a complex interplay between soluble and cellular mediators(Amantea et al.,2015).Accordingly,recent expression profiling studies have revealed that the majority of the genes modulated in the blood of stroke patients participate in the regulation of innate immune responses(Brooks et al.,2014).展开更多
Neuroinflammation is one of the three important pathological features in neurodegenerative diseases including Parkinson’s disease(PD).The regulation of neuroinflammation can reduce the severity of neurological damage...Neuroinflammation is one of the three important pathological features in neurodegenerative diseases including Parkinson’s disease(PD).The regulation of neuroinflammation can reduce the severity of neurological damage to alleviate diseases.Numerous studies have shown that the phenotype switch of microglia is tightly associated with the nuclear factorκB(NF-κB)-mediated inflammatory pathway.Therefore,the small interfering RNA(siRNA)therapy for downregulating the expression of NF-κB,provides a promising therapeutic strategy for Parkinson’s disease treatments.Considering the brain delivery challenges of siRNA,a sequential targeting inflammation regulation(STIR)delivery system based on poly(amino acid)s is developed to improve the therapeutic effects of Parkinson’s disease treatments.The STIR system sequentially targets the blood–brain barrier and the microglia to enhance the effective concentration of siRNA in the targeted microglia.The results demonstrate that the STIR nanoparticles can transform microglial phenotypes and regulate brain inflammation,thus achieving neuronal recovery and abnormal aggregation ofα-synuclein protein(α-syn)reduction in the treatment of Parkinson’s disease.Herein,this STIR delivery system provides a promising therapeutic platform in PD treatments and has great potential for other neurodegenerative diseases’therapies.展开更多
文摘There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progression.In acute CNS injury,brain microglia are among the first cells to respond and play a critical role in neural repair and regeneration.However,microglial activation can also impede CNS repair and amplify tissue damage,and phenotypic transformation may be responsible for this dual role.Mesenchymal stem cell(MSC)-derived exosomes(Exos)are promising therapeutic agents for the treatment of acute CNS injuries due to their immunomodulatory and regenerative properties.MSC-Exos are nanoscale membrane vesicles that are actively released by cells and are used clinically as circulating biomarkers for disease diagnosis and prognosis.MSC-Exos can be neuroprotective in several acute CNS models,including for stroke and traumatic brain injury,showing great clinical potential.This review summarized the classification of acute CNS injury disorders and discussed the prominent role of microglial activation in acute CNS inflammation and the specific role of MSC-Exos in regulating pro-inflammatory microglia in neuroinflammatory repair following acute CNS injury.Finally,this review explored the potential mechanisms and factors associated with MSCExos in modulating the phenotypic balance of microglia,focusing on the interplay between CNS inflammation,the brain,and injury aspects,with an emphasis on potential strategies and therapeutic interventions for improving functional recovery from early CNS inflammation caused by acute CNS injury.
文摘The development of ischemic brain damage is dramatically affected by the immune system,whose activation occurs immediately after the insult and may last for several days,involving a complex interplay between soluble and cellular mediators(Amantea et al.,2015).Accordingly,recent expression profiling studies have revealed that the majority of the genes modulated in the blood of stroke patients participate in the regulation of innate immune responses(Brooks et al.,2014).
基金the National Natural Science Foundation of China(Nos:22075289,21875254,31771095,and 52073287).
文摘Neuroinflammation is one of the three important pathological features in neurodegenerative diseases including Parkinson’s disease(PD).The regulation of neuroinflammation can reduce the severity of neurological damage to alleviate diseases.Numerous studies have shown that the phenotype switch of microglia is tightly associated with the nuclear factorκB(NF-κB)-mediated inflammatory pathway.Therefore,the small interfering RNA(siRNA)therapy for downregulating the expression of NF-κB,provides a promising therapeutic strategy for Parkinson’s disease treatments.Considering the brain delivery challenges of siRNA,a sequential targeting inflammation regulation(STIR)delivery system based on poly(amino acid)s is developed to improve the therapeutic effects of Parkinson’s disease treatments.The STIR system sequentially targets the blood–brain barrier and the microglia to enhance the effective concentration of siRNA in the targeted microglia.The results demonstrate that the STIR nanoparticles can transform microglial phenotypes and regulate brain inflammation,thus achieving neuronal recovery and abnormal aggregation ofα-synuclein protein(α-syn)reduction in the treatment of Parkinson’s disease.Herein,this STIR delivery system provides a promising therapeutic platform in PD treatments and has great potential for other neurodegenerative diseases’therapies.