In this paper, we present the simulation and fabrication of a thin film bulk acoustic resonator (FBAR). In order to improve the accuracy of simulation, an improved Mason model was introduced to design the resonator ...In this paper, we present the simulation and fabrication of a thin film bulk acoustic resonator (FBAR). In order to improve the accuracy of simulation, an improved Mason model was introduced to design the resonator by taking the coupling effect between electrode and substrate into consideration. The resonators were fabricated by tile eight inch CMOS process, and the measurements show that the improved Mason model is more accurate than a simple Mason model. The Qs (Q at series resonance), Qp (Q at parallel resonance), Qmax and k2 of the FBAR were measured to be 695, 814, 1049, and 7.01% respectively, showing better performace than previous reports.展开更多
This paper presents an SOI(silicon on insulator) MEMS(micro-electro-mechanical systems) vibratory gyroscope that was fabricated using bulk micromachining processes.In the gyroscope architecture,a frame structure t...This paper presents an SOI(silicon on insulator) MEMS(micro-electro-mechanical systems) vibratory gyroscope that was fabricated using bulk micromachining processes.In the gyroscope architecture,a frame structure that nests the proof mass is used to decouple the drive motion and sense motion.This approach ensures that the drive motion is well aligned with the designed drive axis,and minimizes the actual drive motion component along the sense detection axis.The thickness of the structural layer of the device is 100μm,which induces a high elastic stiffness in the thickness direction,so it can suppress the high-order out-of-plane resonant modes to reduce deviation.In addition,the dynamics of the gyroscope indicate that higher driving mass brings about higher sensing displacements.The thick structural layer can improve the output of the device by offering a sufficient mass weight and large sensing capacitance.The preliminary test results of the vacuum packaged device under atmospheric pressure will be provided.The scale factor is 1.316×10^-4 V/(deg/s),the scale factor nonlinearity and asymmetry are 1.87%and 0.36%,the zero-rate offset is 7.74×10^4 V,and the zero-rate stability is 404 deg/h,respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.61274119,61306141,61335008)the Natural Science Foundation of Jiangsu Province(No.BK20131099)
文摘In this paper, we present the simulation and fabrication of a thin film bulk acoustic resonator (FBAR). In order to improve the accuracy of simulation, an improved Mason model was introduced to design the resonator by taking the coupling effect between electrode and substrate into consideration. The resonators were fabricated by tile eight inch CMOS process, and the measurements show that the improved Mason model is more accurate than a simple Mason model. The Qs (Q at series resonance), Qp (Q at parallel resonance), Qmax and k2 of the FBAR were measured to be 695, 814, 1049, and 7.01% respectively, showing better performace than previous reports.
基金supported by the National Natural Science Foundation of China(Nos.6127400l,61006073,61234007)
文摘This paper presents an SOI(silicon on insulator) MEMS(micro-electro-mechanical systems) vibratory gyroscope that was fabricated using bulk micromachining processes.In the gyroscope architecture,a frame structure that nests the proof mass is used to decouple the drive motion and sense motion.This approach ensures that the drive motion is well aligned with the designed drive axis,and minimizes the actual drive motion component along the sense detection axis.The thickness of the structural layer of the device is 100μm,which induces a high elastic stiffness in the thickness direction,so it can suppress the high-order out-of-plane resonant modes to reduce deviation.In addition,the dynamics of the gyroscope indicate that higher driving mass brings about higher sensing displacements.The thick structural layer can improve the output of the device by offering a sufficient mass weight and large sensing capacitance.The preliminary test results of the vacuum packaged device under atmospheric pressure will be provided.The scale factor is 1.316×10^-4 V/(deg/s),the scale factor nonlinearity and asymmetry are 1.87%and 0.36%,the zero-rate offset is 7.74×10^4 V,and the zero-rate stability is 404 deg/h,respectively.