Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate th...Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate the configuration stiffness of mechanisms during the mechanism design stage.It is a challenge to select appropriate 2R1T PMs with excellent stiffness performance during the design stage.Considering the operational status of 2R1T PMs,the bending and torsional stiffness are considered as indices to evaluate PMs'configuration stiffness.Subsequently,a specific method is proposed to calculate these stiffness indices.Initially,the various types of structural and driving stiffness for each branch are assessed and their specific values defined.Subsequently,a rigid-flexible coupled force model for the over-constrained 2R1T PM is established,and the proposed evaluation method is used to analyze the configuration stiffness of the five 2R1T PMs in the entire workspace.Finally,the driving force and constraint force of each branch in the whole working space are calculated to further elucidate the stiffness evaluating results by using the proposed method above.The obtained results demonstrate that the bending and torsional stiffness of the 2RPU/UPR/RPR mechanism along the x and y-directions are larger than the other four mechanisms.展开更多
The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration...The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.展开更多
The determination of virtual constraints is always one of the key and difficult problems in traditional mobility calculation. To make mobility calculation simple, considering avoiding virtual constraints, some new for...The determination of virtual constraints is always one of the key and difficult problems in traditional mobility calculation. To make mobility calculation simple, considering avoiding virtual constraints, some new formulae have been presented, however these formulae can hardly intuitively reflect general link group's restrictions on output member and its influences on independence of output parameters, which is premise to the judgment of the properties of mobility. Towards the problem to reveal the intrinsic relationship between the degree of freedom(DOF) of a mechanism, the link group, and the dimension of output parameters, also to avoid determination of virtual constraint, based on the new concepts of the "DOF of general link group" and "node parameters", a new formula in the calculation of the mobility of mechanisms is presented that is expressed with DOFs of the general link groups and rank of motion parameters of base point of the output link. It is named GOM(mobility of groups and output parameter) formula. On the basis of new concepts of"effective parameters" and "invalid parameters", a rule is put forward for solving the DOF of mechanisms with invalid parameters by GOM formula, that is, the base point parameters are the subset of effective parameters of link group. Thereafter, several examples are enumerated and the results coincide with the prototype data, which proves the validity of the proposed formula. Meanwhile, it is obtained that the necessary and sufficient condition for the judgment of output parameters independence is that each of the DOF of the link group is not less than zero. The proposed formula which is simple in calculation provides theoretical basis for the judgment of independence of output parameters and provides references for type synthesis of novel parallel mechanisms with independence requirements of their output parameters.展开更多
Presents the detailed algorithm established for determination of workspace for a 3-DOF coordinate measuring machine using parallel link mechanism by constructing the inverse kinematic model first and then reviewing th...Presents the detailed algorithm established for determination of workspace for a 3-DOF coordinate measuring machine using parallel link mechanism by constructing the inverse kinematic model first and then reviewing the physical and kinematical constraints from the structural characteristics of the parallel link mechanism, and discusses the actual geometries of workspace and the factors having effect on workspace through computer simulation thereby providing necessary theoretical basis for the research and development of coordinate measuring machines using parallel link mechanism.展开更多
Type synthesis of lower-mobility parallel mechanisms (PMs) has drawn extensive interests, particularly two main approaches were established by using the reciprocal screw system theory and Lie group theory, respectivel...Type synthesis of lower-mobility parallel mechanisms (PMs) has drawn extensive interests, particularly two main approaches were established by using the reciprocal screw system theory and Lie group theory, respectively. Although every above approach provides a universal framework for structural design of general lower-mobility PMs, type synthesis is still a comparably difficult task for the PMs with particular geometry or required to fulfill some specified tasks. This paper aims at exploring a simple and effective synthesis method for lower-mobility parallel mechanisms with orthogonal arrangement (OPMs), and the applied mathematical tool is established in the displacement group theory. For this purpose, the concept of the Cartesian DOF-characteristic matrix, originated from canonical displacement subgroup and displacement submanifold, is proposed. A new approach based on combination of the atlas of Cartesian DOF-characteristic matrix and displacement group-theoretic method is addressed for both exhaustive classification and type synthesis of OPMs. Type synthesis for some representatives of 3-DOF OPMs verifies effectiveness of the proposed approach.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.51875495,U2037202)Hebei Provincial Science and Technology Project (Grant No.206Z1805G)。
文摘Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate the configuration stiffness of mechanisms during the mechanism design stage.It is a challenge to select appropriate 2R1T PMs with excellent stiffness performance during the design stage.Considering the operational status of 2R1T PMs,the bending and torsional stiffness are considered as indices to evaluate PMs'configuration stiffness.Subsequently,a specific method is proposed to calculate these stiffness indices.Initially,the various types of structural and driving stiffness for each branch are assessed and their specific values defined.Subsequently,a rigid-flexible coupled force model for the over-constrained 2R1T PM is established,and the proposed evaluation method is used to analyze the configuration stiffness of the five 2R1T PMs in the entire workspace.Finally,the driving force and constraint force of each branch in the whole working space are calculated to further elucidate the stiffness evaluating results by using the proposed method above.The obtained results demonstrate that the bending and torsional stiffness of the 2RPU/UPR/RPR mechanism along the x and y-directions are larger than the other four mechanisms.
基金Supported by National Natural Science Foundation of China(Grant No.51405425)Hebei Provincial Natural Science Foundation of China(Grant No.E2014203255)Independent Research Program Topics of Young Teachers in Yanshan University,China(Grant No.13LGA001)
文摘The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.
基金supported by National Natural Science Foundation of China(Grant Nos.51275438,51005195)Hebei Provincial Natural Science Foundation of(Grant No.E2011203214)Development Program of Qinhuangdao City,China(Grant No.201101A069)
文摘The determination of virtual constraints is always one of the key and difficult problems in traditional mobility calculation. To make mobility calculation simple, considering avoiding virtual constraints, some new formulae have been presented, however these formulae can hardly intuitively reflect general link group's restrictions on output member and its influences on independence of output parameters, which is premise to the judgment of the properties of mobility. Towards the problem to reveal the intrinsic relationship between the degree of freedom(DOF) of a mechanism, the link group, and the dimension of output parameters, also to avoid determination of virtual constraint, based on the new concepts of the "DOF of general link group" and "node parameters", a new formula in the calculation of the mobility of mechanisms is presented that is expressed with DOFs of the general link groups and rank of motion parameters of base point of the output link. It is named GOM(mobility of groups and output parameter) formula. On the basis of new concepts of"effective parameters" and "invalid parameters", a rule is put forward for solving the DOF of mechanisms with invalid parameters by GOM formula, that is, the base point parameters are the subset of effective parameters of link group. Thereafter, several examples are enumerated and the results coincide with the prototype data, which proves the validity of the proposed formula. Meanwhile, it is obtained that the necessary and sufficient condition for the judgment of output parameters independence is that each of the DOF of the link group is not less than zero. The proposed formula which is simple in calculation provides theoretical basis for the judgment of independence of output parameters and provides references for type synthesis of novel parallel mechanisms with independence requirements of their output parameters.
文摘Presents the detailed algorithm established for determination of workspace for a 3-DOF coordinate measuring machine using parallel link mechanism by constructing the inverse kinematic model first and then reviewing the physical and kinematical constraints from the structural characteristics of the parallel link mechanism, and discusses the actual geometries of workspace and the factors having effect on workspace through computer simulation thereby providing necessary theoretical basis for the research and development of coordinate measuring machines using parallel link mechanism.
基金supported by the National Natural Science Foundation of China (Grant No. 50875008)Beijing Nova Program (Grant No. 2006A13)
文摘Type synthesis of lower-mobility parallel mechanisms (PMs) has drawn extensive interests, particularly two main approaches were established by using the reciprocal screw system theory and Lie group theory, respectively. Although every above approach provides a universal framework for structural design of general lower-mobility PMs, type synthesis is still a comparably difficult task for the PMs with particular geometry or required to fulfill some specified tasks. This paper aims at exploring a simple and effective synthesis method for lower-mobility parallel mechanisms with orthogonal arrangement (OPMs), and the applied mathematical tool is established in the displacement group theory. For this purpose, the concept of the Cartesian DOF-characteristic matrix, originated from canonical displacement subgroup and displacement submanifold, is proposed. A new approach based on combination of the atlas of Cartesian DOF-characteristic matrix and displacement group-theoretic method is addressed for both exhaustive classification and type synthesis of OPMs. Type synthesis for some representatives of 3-DOF OPMs verifies effectiveness of the proposed approach.