期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Mesoscale and Microphysical Characteristics of a Double Rain Belt Event in South China on May 10–13,2022
1
作者 郭照华 谌芸 +1 位作者 肖天贵 曾智琳 《Journal of Tropical Meteorology》 SCIE 2024年第1期61-75,共15页
A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics... A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics of the frontal and warm sector rain belts that occurred in South China on May 10–13,2022.The southern rain belt occurred in an environment with favorable mesoscale conditions but weak large-scale forcing.In contrast,the northern rain belt was related to low-level horizontal shear and the surface-level front.The interaction between the enhanced southeasterly winds and the rainfall-induced cold pool promoted the persistent growth of convection along the southern rain belt.The convective cell propagated east over the coastal area,where there was a large temperature gradient.The bow-shaped echo in this region may be closely related to the rear-inflow jet.By contrast,the initial convection of the northern rain belt was triggered along the front and the region of low-level horizontal shear,with mesoscale interactions between the enhanced warm-moist southeasterly airflow and the cold dome associated with the earlier rain.The terrain blocked the movement of the cold pool,resulting in the stagnation of the frontal convective cell at an early stage.Subsequently,a meso-γ-scale vortex formed during the rapid movement of the convective cell,corresponding to an enhancement of precipitation.The representative raindrop spectra for the southern rain belt were characterized by a greater number and higher density of raindrops than the northern rain belt,even though both resulted in comparable hourly rainfalls.These results help us better understand the characteristics of double rain belts over South China. 展开更多
关键词 double rain belts in South China mesoscale rainstorm cyclonic shear line cold pool bow-shaped echo microphysical characteristics
下载PDF
Comparison of Microphysical Characteristics of Warm-sector,Frontal and Shear-line Heavy Rainfall During the Pre-summer Rainy Season in South China
2
作者 夏丰 刘显通 +6 位作者 胡胜 黎慧琦 饶晓娜 林青 肖辉 冯璐 赖睿泽 《Journal of Tropical Meteorology》 SCIE 2023年第2期204-215,共12页
Warm-sector heavy rainfall(WR),shear-line heavy rainfall(SR),and frontal heavy rainfall(FR)are three types of rainfall that frequently occur during the pre-summer rainy season in south China.In this research,we invest... Warm-sector heavy rainfall(WR),shear-line heavy rainfall(SR),and frontal heavy rainfall(FR)are three types of rainfall that frequently occur during the pre-summer rainy season in south China.In this research,we investigated the differences in microphysical characteristics of heavy rainfall events during the period of 10-15 May 2022 based on the combined observations from 11 S-band polarimetric radars in south China.The conclusions are as follows:(1)WR has the highest radar echo top height,the strongest radar echo at all altitudes,the highest lightning density,and the most active ice-phase process,which suggests that the convection is the most vigorous in the WR,moderate in the FR,and the weakest in the SR.(2)Three types of rainfall are all marine-type precipitation,the massweighted mean diameter(Dm,mm)and the intercept parameter(Nw,mm^(-1) m^(-3))of the raindrops in the WR are the largest.(3)The WR possesses the highest proportion of graupel compared with the FR and SR,and stronger updrafts and more abundant water vapor supply may lead to larger raindrops during the melting and collision-coalescence processes.(4)Over all the heights,liquid and ice water content in the WR are higher than those in the SR and FR,the ratio of ice to liquid water content in the WR is as high as 27%when ZH exceeds 50 dBZ,definitely higher than that in the SR and FR,indicating that the active ice-phase process existing in the WR is conducive to the formation of heavy rainfall. 展开更多
关键词 microphysical characteristic S-band polarimetric radar warm-sector heavy rainfall frontal heavy rainfall shear-line heavy rainfall
下载PDF
Numerical Simulation of the Scavenging Rates of Ice Crystals of Various Microphysical Characteristics
3
作者 Richard L. Pitter Renyi Zhang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1991年第2期175-200,共26页
Numerical models of trajectories of small aerosol spheres relative to oblate spheroids were used to determine ice crystal scavenging efficiencies. The models included the effects of aerodynamic flow about the ice part... Numerical models of trajectories of small aerosol spheres relative to oblate spheroids were used to determine ice crystal scavenging efficiencies. The models included the effects of aerodynamic flow about the ice particle, gravity, aerosol particle inertia and drag and electrostatic effects. Two electric configurations of the ice particle were investigated in detail. The first applied a net charge to the ice particle, of magnitude equal to the mean thunderstorm charge distribution, while the second applied a charge distribution, with no net charge, to the ice particle to model the electric multipole charge distribution. The results show that growing ice crystals with electric multipoles are better scavengers than single ice crystals with net thunderstorm charges, especially in the Greenfield gap (0.1 to 1.0 um), and that larger single crystals are better scavengers than smaller single crystals. The results also show that the low density ice crystals are more effective scavengers with net charges than they are with charge distribution. 展开更多
关键词 Numerical Simulation of the Scavenging Rates of Ice Crystals of Various microphysical characteristics
下载PDF
Cloud Microphysical Characteristics of Typhoon Meranti(2016)during Its Rapid Intensification:Model Validation and SST Sensitivity Experiments
4
作者 Rui WANG Yihong DUAN Jianing FENG 《Journal of Meteorological Research》 SCIE CSCD 2024年第3期542-557,共16页
Cloud microphysics plays an important role in determining the intensity and precipitation of tropical cyclones(TCs).In this study,a high-resolution numerical simulation by WRF(version 4.2)of Typhoon Meranti(2016)durin... Cloud microphysics plays an important role in determining the intensity and precipitation of tropical cyclones(TCs).In this study,a high-resolution numerical simulation by WRF(version 4.2)of Typhoon Meranti(2016)during its rapid intensification(RI)period was conducted and validated by multi-source observations including Cloud-Sat and Global Precipitation Mission satellite data.The snow and ice particles content were found to increase most rapidly compared with other hydrometeors during the RI process.Not all hydrometeors continued to increase.The graupel content only increased in the initial RI stage,and then decreased afterwards due to precipitation during the RI process.In addition,sea surface temperature(SST)sensitivity experiments showed that,although the intensity of the TC increased with a higher SST,not all hydrometeors increased.The graupel content continued to increase with the increase in SST,mainly due to the accumulation of more lower-temperature supercooled water vapor at the corresponding height.The content of snow decreased with the increase in SST because stronger vertical motion at the corresponding height affected the aggregation of ice crystals. 展开更多
关键词 tropical cyclone rapid intensification cloud microphysical characteristics sea surface temperature(SST)
原文传递
Variability of microphysical characteristics in the “21·7” Henan extremely heavy rainfall event 被引量:5
5
作者 Gang CHEN Kun ZHAO +10 位作者 Yinghui LU Yuanyuan ZHENG Ming XUE Zhe-Min TAN Xin XU Hao HUANG Haonan CHEN Fen XU Ji YANG Shushi ZHANG Xueqi FAN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第10期1861-1878,共18页
In this study, significant rainfall microphysical variability is revealed for the extremely heavy rainfall event over Henan Province in July 2021(the “21·7” Henan EHR event) using a dense network of disdrometer... In this study, significant rainfall microphysical variability is revealed for the extremely heavy rainfall event over Henan Province in July 2021(the “21·7” Henan EHR event) using a dense network of disdrometers and two polarimetric radars.The broad distributions of specific drop size distribution(DSD) parameters are identified in heavy rainfall from the disdrometer observations, indicating obvious microphysical variability on the surface. A K-means clustering algorithm is adopted to objectively classify the disdrometer datasets into separate groups, and distinct DSD characteristics are found among these heavy rainfall groups. Combined with the supporting microphysical structures obtained through radar observations, comprehensive microphysical features of the DSD groups are derived. An extreme rainfall group is dominantly formed in the deep convection over the plain regions, where the high number of concentrations and large mean sizes of surface raindrops are underpinned by both active ice-phase processes and efficient warm-rain collision-coalescence processes in the vertical direction. Convection located near orographic regions is characterized by restricted ice-phase processes and high coalescence efficiency of liquid hydrometeors, causing the dominant DSD group to comprise negligible large raindrops. Multiple DSD groups can coexist within certain precipitation episodes at the disdrometer stations, indicating the potential microphysical variability during the passage of convective system on the plain regions. 展开更多
关键词 The“21·7”Henan EHR event microphysical characteristics VARIABILITY DISDROMETER Polarimetric radar
原文传递
Study on Physical Characteristics of a Precipitation Cloud System in Hebei Province in Spring by Aircraft Observation
6
作者 Shuyi WANG Xiaoqing WANG +3 位作者 Xiaobo DONG Jiao FU Jiannan ZHANG Shengfen GAI 《Meteorological and Environmental Research》 CAS 2022年第3期28-36,共9页
Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018... Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018 was analyzed. Research results showed that the detected cloud system was the precipitation stratiform cloud in the later stage of development. The cloud layer developed stably, and the vertical structure was unevenly distributed. The concentration of small cloud particles in high-level clouds was low, and it fluctuated greatly in space, and presented a discontinuous distribution state. The concentration of large cloud particles and precipitation particles was high, which was conducive to the growth of cloud droplets and the aggregation of ice crystals. The concentration of small cloud particles and the content of supercooled water were high in the middle and low-level clouds. The precipitation cloud system had a significant hierarchical structure, which conformed to the "catalysis-supply" mechanism. From the upper layer to the lower layer, the cloud particle spectrum was mainly in the form of single peak or double peak distribution, which showed a monotonic decreasing trend in general. The spectral distribution of small cloud particles in the cloud was discontinuous, and the high-value areas of spectral concentration of large cloud particles and precipitation particles were concentrated in the upper part of the cloud layer, and the particle spectrum was significantly widened. There was inversion zone at the bottom of the cloud layer, which was conducive to the continuous increase of particle concentration and the formation of large supercooled water droplets. 展开更多
关键词 Stratiform cloud Vertical sounding Cloud microphysical characteristics Cloud particle spectrum
下载PDF
Variability of Raindrop Size Distribution during a Regional Freezing Rain Event in the Jianghan Plain of Central China
7
作者 Jingjing LÜ Yue ZHOU +5 位作者 Zhikang FU Chunsong LU Qin HUANG Jing SUN Yue ZHAO Shengjie NIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第4期725-742,I0015-I0018,共22页
The characteristics of the raindrop size distribution(DSD)during regional freezing rain(FR)events that occur throughout the phase change(from liquid to solid)are poorly understood due to limited observations.We invest... The characteristics of the raindrop size distribution(DSD)during regional freezing rain(FR)events that occur throughout the phase change(from liquid to solid)are poorly understood due to limited observations.We investigate the evolution of microphysical parameters and the key formation mechanisms of regional FR using the DSDs from five disdrometer sites in January 2018 in the Jianghan Plain(JHP)of Central China.FR is identified via the size and velocity distribution measured from a disdrometer,the discrete Fréchet distancemethod,surface temperature,human observations,and sounding data.With the persistence of precipitation,the emergence of graupel or snowflakes significantly reduces the proportion of FR.The enhancement of this regional FR event is mainly dominated by the increase in the number concentration of raindrops but weakly affected by the diameters.To improve the accuracy of quantitative precipitation estimation for the FR event,a modified second-degree polynomial relation between the shapeμand slopeΛof gamma DSDs is derived,and a new Z-R(radar reflectivity to rain rate)relationship is developed.The mean values of mass-weighted mean diameters(D_(m))and generalized intercepts(lgN_(w))in FR are close to the stratiform results in the northern region of China.Both the melting of tiny-rimed graupels and large-dry snowflakes are a response to the formation of this regional FR process in the JHP,dominated by the joint influence of the physical mechanism of warm rain,vapor deposition,and aggregation/riming coupled with the effect of weak convective motion in some periods. 展开更多
关键词 freezing rain raindrop size distribution hydrometeor type classification microphysical characteristics lgNw-Dm distribution Jianghan Plain
下载PDF
河南一次层状云宏微观物理特征分析(英文)
8
作者 李铁林 尹彬 +1 位作者 郭献林 邵振平 《Meteorological and Environmental Research》 CAS 2010年第10期96-100,共5页
By using the microphysical data of stratiform cloud in Henan which were observed by PMS airborne cloud particle measure system on March 23 in 2007 and combining with the radar,satellite,sounding data,the macro and mic... By using the microphysical data of stratiform cloud in Henan which were observed by PMS airborne cloud particle measure system on March 23 in 2007 and combining with the radar,satellite,sounding data,the macro and micro physical structure characteristics of cloud were analyzed.The results showed that the average diameter of small cloud drop which was measured by FSSP-100 in the warm layer of cloud was mainly during 5-12 μm,and the average value was 7.33 μm.The biggest diameter of small cloud drop changed during 14-47 μm,and the average value was 27.80 μm.The total number concentration scope of small cloud drop was during 47.73-352.00 drop/cm3,and the average value was 160 drop/cm3.In the cold layer of cloud,the biggest diameter of small cloud particle(included the cloud droplet and the ice crystals)which was measured by FSSP-100 was 24.8 μm.The total number concentration scope of small cloud particle was during 0.899-641.000 drop/cm3,and the average value was 297 drop/cm3.The airborne King heat line liquid water content instrument observed that the super-cooling liquid water existed in the cloud.The super-cooling cloud water content changed during 0.02-0.20 g/m3,and the average value was 0.093 g/m3.The biggest value which was 0.202 g/m3 appeared in 4 368 m height(the temperature was-8.5 ℃).The particle spectrum type in the cloud was mainly the negative exponent type and the single peak type. 展开更多
关键词 microphysical characteristic of cloud Number concentration Super-cooling cloud water content China
下载PDF
Cloud and precipitation interference by strong low-frequency sound wave 被引量:1
9
作者 JiaHua WEI Jun QIU +5 位作者 TieJian LI YueFei HUANG Zhen QIAO JionWei CAO DeYu ZHONG GuangQian WANG 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第2期261-272,共12页
Acoustic interference of atmosphere has been an attractive research area because of its potential effect on environment,water resources,ecology,agriculture,and other areas.However,it is also a controversial topic beca... Acoustic interference of atmosphere has been an attractive research area because of its potential effect on environment,water resources,ecology,agriculture,and other areas.However,it is also a controversial topic because of the difficulty of quantitative assessment and high operating costs.In this study,a novel acoustic interference technology is proposed that uses strong lowfrequency sound waves.There is no chemical pollution or dependence on airborne vehicles,and it can be remotely controlled at low cost.A complete equipment system for acoustic atmospheric interference technology is established,based on which a series of experimental studies on cloud and precipitation response under acoustic action are performed,mainly including the radar echo intensity,cloud microphysical characteristics and the spatial distribution of ground rainfall intensity.The trigger and periodic effect of the acoustic waves on the cloud are proposed to be the key responses of acoustic atmospheric interference.This study is important to further research on atmosphere interference technology based on low frequency strong sound waves. 展开更多
关键词 acoustic interference of atmosphere low-frequency sound waves air water resources exploration cloud microphysical characteristics precipitation intensity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部