In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamicall...In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.展开更多
It is believed that the microseismicity induced by mining effect and gas gradient disturbance stress is a precursor to the essential characteristics of roadway unstability. In order to effectively identify and evaluat...It is believed that the microseismicity induced by mining effect and gas gradient disturbance stress is a precursor to the essential characteristics of roadway unstability. In order to effectively identify and evaluate the stability of coal roadways in the process of mine development and extraction, a microseismic monitoring system was deployed for the study of the stress evolution process, damage degree and distribution characteristics in the tailgate and headgate. The mine under study is the 62113 outburst working face of Xin Zhuangzi coalmine in Huainan mining area. The whole process of microfractures initiation,extension, interaction and coalescence mechanisms during the progressive failure processes of the coal rock within the delineated and typical event clusters were investigated by means of a two dimensional realistic failure process analysis code(RFPA2D-Flow). The results show that the microseismic events gradually create different-sized event clusters. The microseismicity of the tailgate is significantly higher than that of the headgate. The study indicates that the greater anomalous stress region matches the area where microfractures continuously develop and finally connect to each other and form a fissure zone.Due to the mine layout and stress concentration, the ruptured area is mainly located on the left shoulder of the tailgate roof. The potential anomalous stress region of the coal roadway obtained by numerical simulation is relatively in good agreement with the trend of spatial macro evolution of coal rock microfractures captured by the microseismic monitoring system. The research results can provide important basis for understanding instability failure mechanism of deep roadway and microseismic activity law in complex geologic conditions, and it ultimately can be used to guide the selection and optimization of reinforcement and protection scheme.展开更多
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.51304154)the Natural Science Foundation Anhui Province(No.1408085MKL92)
文摘In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos.51674189,51304154,and 51327007)the Youth Science and technology new star of Shaanxi Province (No.2016KJXX-37)the Scientific research plan of Shaanxi Education Department (No.16JK1487)
文摘It is believed that the microseismicity induced by mining effect and gas gradient disturbance stress is a precursor to the essential characteristics of roadway unstability. In order to effectively identify and evaluate the stability of coal roadways in the process of mine development and extraction, a microseismic monitoring system was deployed for the study of the stress evolution process, damage degree and distribution characteristics in the tailgate and headgate. The mine under study is the 62113 outburst working face of Xin Zhuangzi coalmine in Huainan mining area. The whole process of microfractures initiation,extension, interaction and coalescence mechanisms during the progressive failure processes of the coal rock within the delineated and typical event clusters were investigated by means of a two dimensional realistic failure process analysis code(RFPA2D-Flow). The results show that the microseismic events gradually create different-sized event clusters. The microseismicity of the tailgate is significantly higher than that of the headgate. The study indicates that the greater anomalous stress region matches the area where microfractures continuously develop and finally connect to each other and form a fissure zone.Due to the mine layout and stress concentration, the ruptured area is mainly located on the left shoulder of the tailgate roof. The potential anomalous stress region of the coal roadway obtained by numerical simulation is relatively in good agreement with the trend of spatial macro evolution of coal rock microfractures captured by the microseismic monitoring system. The research results can provide important basis for understanding instability failure mechanism of deep roadway and microseismic activity law in complex geologic conditions, and it ultimately can be used to guide the selection and optimization of reinforcement and protection scheme.