期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
AMicroseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA
1
作者 Dijun Rao Min Huang +2 位作者 Xiuzhi Shi Zhi Yu Zhengxiang He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期187-217,共31页
The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ... The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher. 展开更多
关键词 Variational mode decomposition microseismic signal DENOISING wavelet threshold denoising black widow optimization algorithm
下载PDF
Microseismic signal denoising by combining variational mode decomposition with permutation entropy 被引量:5
2
作者 Zhang Xing-Li Cao Lian-Yue +2 位作者 Chen Yan Jia Rui-Sheng Lu Xin-Ming 《Applied Geophysics》 SCIE CSCD 2022年第1期65-80,144,145,共18页
Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the ef... Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the effective microseismic signal from polluted noisy signals,a novel microseismic signal denoising method that combines the variational mode decomposition(VMD)and permutation entropy(PE),which we denote as VMD–PE,is proposed in this paper.VMD is a recently introduced technique for adaptive signal decomposition,where K is an important decomposing parameter that determines the number of modes.VMD provides a predictable eff ect on the nature of detected modes.In this work,we present a method that addresses the problem of selecting an appropriate K value by constructing a simulation signal whose spectrum is similar to that of a mine microseismic signal and apply this value to the VMD–PE method.In addition,PE is developed to identify the relevant effective microseismic signal modes,which are reconstructed to realize signal filtering.The experimental results show that the VMD–PE method remarkably outperforms the empirical mode decomposition(EMD)–VMD filtering and detrended fl uctuation analysis(DFA)–VMD denoising methods of the simulated and real microseismic signals.We expect that this novel method can inspire and help evaluate new ideas in this field. 展开更多
关键词 DENOISING Microseismic signal Permutation entropy Variational mode decomposition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部