According to the stress-strain curves of single-phase martensite and single-phase ferrite steels,whose compositions are similar to those of martensite and ferrite in low Si-Mn-Nb dual-phase steel,the stress-strain cur...According to the stress-strain curves of single-phase martensite and single-phase ferrite steels,whose compositions are similar to those of martensite and ferrite in low Si-Mn-Nb dual-phase steel,the stress-strain curve of the low Si-Mn-Nb dual-phase steel was simulated using the finite element method(FEM).The simulated result was compared with the measured one and they fit closely with each other, which proves that the FE model is correct.Based on the FE model,the microstress and microstrain of the dual-phase steel were analyzed. Meanwhile,the effective factors such as the volume fraction of martensite and the yield stress ratio between martensite and ferrite phases on the stress-strain curves of the dual-phase steel were simulated,too.The simulated results indicate that for the low Si-Mn-Nb dual-phase steel, the maximum stress occurs in the martensite region,while the maximum strain occurs in the ferrite one.The effect of the volume fraction of martensite(fm) and the yield stress ratio on the stress-strain curve of the dual-phase steel is small in the elastic part,while it is obvious in the plastic part.In the plastic part of this curve,the strain decreases with the increase of f_M,while it decreases with the decrease of the yield stress ratio.展开更多
The microstraining prior to yield of several common metallic materials has been studied.The resistances of metals to microstrain and to macroyield are believed to be based on different deformation mechanisms and to be...The microstraining prior to yield of several common metallic materials has been studied.The resistances of metals to microstrain and to macroyield are believed to be based on different deformation mechanisms and to be changed in different patterns.The influential factors upon the microstraining,such as heat treatment,prestrain,strain-aging and residual stress together with their mechanisms have been also discussed.展开更多
The elastic microstrains in a crystallite of electrodeposited nanocrystalline copper were investigated by analyzing the high resolution electron microscopy (HRTEM) image. The microstrain was considered as consisting...The elastic microstrains in a crystallite of electrodeposited nanocrystalline copper were investigated by analyzing the high resolution electron microscopy (HRTEM) image. The microstrain was considered as consisting of two parts, in which the uniform part was determined with fast Fourier transformation of the HRTEM image, while the non-uniform part of the microstrain in the crystallite was measured by means of peak finding. Atomic column spacing measurements show that the crystal lattice is contracted in the longitudinal direction, while expanded in the transverse direction of the elliptical crystallite, indicating that the variation of microstrain exists mainly near the grain boundary.展开更多
All-inorganic perovskite solar cells(PSCs)have developed rapidly in the field of photovoltaics due to their excellent thermal and light stability.However,compared with organic–inorganic hybrid perovskites,the phase i...All-inorganic perovskite solar cells(PSCs)have developed rapidly in the field of photovoltaics due to their excellent thermal and light stability.However,compared with organic–inorganic hybrid perovskites,the phase instability of inorganic perovskite under humidity still remains as a critical issue that ham-pers the commercialization of inorganic PSCs.We originally propose in this work that microstrains between the perovskite lattices/grains play a key role in affecting the phase stability of inorganic perovskite.To this end,we inno-vatively design theπ-conjugated p-type molecule bis(2-ethylhexyl)3,30((4,8-bis(5-(2-ethylhexyl)-3,4-difluorothiophen-2-yl)benzo[1,2-b:4,5-b0]dithiophene-2,6-di yl)bis(3,300-dioctyl[2,20:50,200-terthiophene]-500,5-diyl))(2E,20 E)-bis(2-cyanoacrylate)(BTEC-2F)to covalent with the Pb dangling bonds in CsPbI2Br perovskite film,which significantly suppress the trap states and release the defect-induced local stress between perovskite grains.The interplay between the microstrains and phase stability of the inorganic perovskite are scrutinized by a series of charac-terizations including x-ray photoelectron spectroscopy,photoluminescence,x-ray diffraction,scanning electron microscopy,and so forth,based on which,we conclude that weaker local stresses in the perovskite film engender superior phase stability by preventing the perovskite lattice distortion under humidity.By this rational design,PSCs based on CsPbI2Br perovskite system deliver an outstanding power conversion efficiency(PCE)up to 16.25%.The unencapsulated device also exhibits an exceptional moisture stability by retaining over 80%of the initial PCE after 500 h aging in ambient with relative humidity of(RH)25%.展开更多
We demonstrate for the first time that a short time of microwave irradiation on the oxide precursor of a Cu/ZnO/Al2O3 catalyst can provide unique opportunity for tailoring the microstructure and activity of the cataly...We demonstrate for the first time that a short time of microwave irradiation on the oxide precursor of a Cu/ZnO/Al2O3 catalyst can provide unique opportunity for tailoring the microstructure and activity of the catalyst for methanol steam reforming. It is shown by in situ XRD that a considerable increase in the microstrain of Cu nanocrystals could be achieved in the catalysts processed by microwave irradiation for 310 min, which correlates well with the enhanced CH3OH conversion as observed on the corresponding samples. The present work also confirms that although the high specific surface area of Cu is a prerequisite for catalytic activity, it does not account for the observed changes in activity and selectivity alone without taking bulk microstructural changes into account.展开更多
基金supported by the Natural Science Foundation of Hebei Province(No.E2008000822) the Program for One Hundred Excellent Talents of Hebei Province,China.
文摘According to the stress-strain curves of single-phase martensite and single-phase ferrite steels,whose compositions are similar to those of martensite and ferrite in low Si-Mn-Nb dual-phase steel,the stress-strain curve of the low Si-Mn-Nb dual-phase steel was simulated using the finite element method(FEM).The simulated result was compared with the measured one and they fit closely with each other, which proves that the FE model is correct.Based on the FE model,the microstress and microstrain of the dual-phase steel were analyzed. Meanwhile,the effective factors such as the volume fraction of martensite and the yield stress ratio between martensite and ferrite phases on the stress-strain curves of the dual-phase steel were simulated,too.The simulated results indicate that for the low Si-Mn-Nb dual-phase steel, the maximum stress occurs in the martensite region,while the maximum strain occurs in the ferrite one.The effect of the volume fraction of martensite(fm) and the yield stress ratio on the stress-strain curve of the dual-phase steel is small in the elastic part,while it is obvious in the plastic part.In the plastic part of this curve,the strain decreases with the increase of f_M,while it decreases with the decrease of the yield stress ratio.
文摘The microstraining prior to yield of several common metallic materials has been studied.The resistances of metals to microstrain and to macroyield are believed to be based on different deformation mechanisms and to be changed in different patterns.The influential factors upon the microstraining,such as heat treatment,prestrain,strain-aging and residual stress together with their mechanisms have been also discussed.
基金Funded by the National Natural Science Foundation of China (No. 50171048)
文摘The elastic microstrains in a crystallite of electrodeposited nanocrystalline copper were investigated by analyzing the high resolution electron microscopy (HRTEM) image. The microstrain was considered as consisting of two parts, in which the uniform part was determined with fast Fourier transformation of the HRTEM image, while the non-uniform part of the microstrain in the crystallite was measured by means of peak finding. Atomic column spacing measurements show that the crystal lattice is contracted in the longitudinal direction, while expanded in the transverse direction of the elliptical crystallite, indicating that the variation of microstrain exists mainly near the grain boundary.
基金CAS Key Project of Frontier Science Research,Grant/Award Number:QYZDBSSW-SYS030National Natural Science Foundation of China,Grant/Award Numbers:22005322,51773212,81903743+2 种基金National Science Fund for Distinguished Young Scholars,Grant/Award Number:21925506Ningbo S&T Innovation 2025 Major Special Programme,Grant/Award Number:2018B10055National Key R&D Program of China,Grant/Award Number:2017YFE0106000。
文摘All-inorganic perovskite solar cells(PSCs)have developed rapidly in the field of photovoltaics due to their excellent thermal and light stability.However,compared with organic–inorganic hybrid perovskites,the phase instability of inorganic perovskite under humidity still remains as a critical issue that ham-pers the commercialization of inorganic PSCs.We originally propose in this work that microstrains between the perovskite lattices/grains play a key role in affecting the phase stability of inorganic perovskite.To this end,we inno-vatively design theπ-conjugated p-type molecule bis(2-ethylhexyl)3,30((4,8-bis(5-(2-ethylhexyl)-3,4-difluorothiophen-2-yl)benzo[1,2-b:4,5-b0]dithiophene-2,6-di yl)bis(3,300-dioctyl[2,20:50,200-terthiophene]-500,5-diyl))(2E,20 E)-bis(2-cyanoacrylate)(BTEC-2F)to covalent with the Pb dangling bonds in CsPbI2Br perovskite film,which significantly suppress the trap states and release the defect-induced local stress between perovskite grains.The interplay between the microstrains and phase stability of the inorganic perovskite are scrutinized by a series of charac-terizations including x-ray photoelectron spectroscopy,photoluminescence,x-ray diffraction,scanning electron microscopy,and so forth,based on which,we conclude that weaker local stresses in the perovskite film engender superior phase stability by preventing the perovskite lattice distortion under humidity.By this rational design,PSCs based on CsPbI2Br perovskite system deliver an outstanding power conversion efficiency(PCE)up to 16.25%.The unencapsulated device also exhibits an exceptional moisture stability by retaining over 80%of the initial PCE after 500 h aging in ambient with relative humidity of(RH)25%.
文摘We demonstrate for the first time that a short time of microwave irradiation on the oxide precursor of a Cu/ZnO/Al2O3 catalyst can provide unique opportunity for tailoring the microstructure and activity of the catalyst for methanol steam reforming. It is shown by in situ XRD that a considerable increase in the microstrain of Cu nanocrystals could be achieved in the catalysts processed by microwave irradiation for 310 min, which correlates well with the enhanced CH3OH conversion as observed on the corresponding samples. The present work also confirms that although the high specific surface area of Cu is a prerequisite for catalytic activity, it does not account for the observed changes in activity and selectivity alone without taking bulk microstructural changes into account.