In this paper, the numerical computation of resonant frequency of the two gap-coupled circular microstrip patch antenna loaded with shorting post by using cavity model is presented. The numerically computed results ar...In this paper, the numerical computation of resonant frequency of the two gap-coupled circular microstrip patch antenna loaded with shorting post by using cavity model is presented. The numerically computed results are compared with simulated results. The two gap-coupled circular microstrip patch antenna loaded with shorting post miniaturize the cross-sectional dimension of the radiating patch at the microwave frequency, which is useful for short range communications or contactless identification systems. The simulation has been performed using method-of-moments based commercially available simulator IE3D.展开更多
In this paper,the gyrotropic bi-anisotropy of the chiral medium in substrate constitutive parameters(xc and hc)of a rectangular microstrip patch antenna is introduced in order to observe its effects on the complex res...In this paper,the gyrotropic bi-anisotropy of the chiral medium in substrate constitutive parameters(xc and hc)of a rectangular microstrip patch antenna is introduced in order to observe its effects on the complex resonant frequency and half-power bandwidth.The analysis is based on the full-wave spectral domain approach using the Moment Method,with sinusoidal type basis functions.The numerical calculations related to the dominant mode have been carried out,and it has been observed that the resonant frequency and the bandwidth are directly linked to the medium chirality.The new results can be considered as a generalisation form of the previously published work.展开更多
In this paper, an analytical model for computing the resonant frequency of the gap-coupled ring microstrip patch antennas is developed. The analytical model is based upon the cavity model along with circuit theory. Us...In this paper, an analytical model for computing the resonant frequency of the gap-coupled ring microstrip patch antennas is developed. The analytical model is based upon the cavity model along with circuit theory. Using the field expressions and boundary conditions, the transcendental equation for the structure is developed. The analytically computed results are compared with the simulated results. The simulation work is carried out by using computer simulation technology(CST) microwave studio simulator.The comparison between simulated and computed results shows good agreement.展开更多
As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical def...As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical deformations;thus,their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive.Here,a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability.The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting,whereas the rapid changing resonance frequency with deformations allows for wireless sensing.The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter(input power of−3 dBm)efficiently(i.e.,the receiving power higher than−100 dBm over a distance of 100 m)on human bodies even upon 25%stretching.The flexibility in structural engineering combined with the coupled mechanical-electromagnetic simulations,provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics.展开更多
Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is show...Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.展开更多
The Volume-Surface Current Continuity Method (VSCCM) is presented to analyze electromagnetic radiation from microstrip antenna. The microstrip antenna is discretized into small triangular patches on conducting surface...The Volume-Surface Current Continuity Method (VSCCM) is presented to analyze electromagnetic radiation from microstrip antenna. The microstrip antenna is discretized into small triangular patches on conducting surface and tetrahedral volume cells in dielectric region. The Method of Moments (MoM) is applied to solve the integral equation. An equation contains the restriction relation between the volume and surface current coefficient is derived from the current continuity equation at those parts where the conducting surface is in contact with the dielectric material. A simple equivalent strip model is introduced in the treatment of the feeding probe in VSCCM. The VSCCM can reduce the unknowns required to be solved in MoM, as well as the condition number of the matrix equation. Numerical results are given to validate the accuracy and efficiency of this method.展开更多
Simple approximate formulas of near field for an element current in microstrip struc-ture are derived by using the exact formulas consisting of integrals of Sommerfeld type.Resultscalculated with these formulas are co...Simple approximate formulas of near field for an element current in microstrip struc-ture are derived by using the exact formulas consisting of integrals of Sommerfeld type.Resultscalculated with these formulas are compared with those obtained by numerically calculating Som-merfeld integrals.It is shown that these formulas are valid for small ρ/λ and have no limitationof layer thickness and loss.展开更多
Based on the integral equation formulations and the moment method, a novel closed form solution for analyzing the mutual coupling effect between the cylindrical comformal rectangular microstrip patch antennas is pres...Based on the integral equation formulations and the moment method, a novel closed form solution for analyzing the mutual coupling effect between the cylindrical comformal rectangular microstrip patch antennas is presented. By using this algorithm, the elements of the impedance matrix and exciting vector are cast into closed forms, thus the computational efficiency is improved dramatically. Numerical results are presented to verify the validity and reliability of the algorithm.展开更多
Today's antennas have to operate in multiple resonant frequencies to satisfy the need of recent advances in communication technologies.This paper presents split ring resonator based triangular multiband antenna wh...Today's antennas have to operate in multiple resonant frequencies to satisfy the need of recent advances in communication technologies.This paper presents split ring resonator based triangular multiband antenna whose antenna performance is enhanced with the help of frequency selective surfaces(FSSs).The antenna has multiple resonances at S,C,and X bands.An array of 4×3 crisscross-shaped unit cells are arranged to form the FSS layer.The antenna is fed with a microstrip line feeding technique.The proposed antenna operates at 3.5 GHz,4.1 GHz,5.5GHz,9.4GHz,and 9.8 GHz with a better return loss and gain.Simulated and measured results yield a good match.展开更多
为了研究应变传感器的无线检测技术,提出一种基于无线射频识别(radio frequency identification,RFID)微带天线应变传感器的无线检测方法,将超高频RFID技术与微带天线技术相结合,以微带天线作为标签天线,接收RFID阅读器发射的能量,激活R...为了研究应变传感器的无线检测技术,提出一种基于无线射频识别(radio frequency identification,RFID)微带天线应变传感器的无线检测方法,将超高频RFID技术与微带天线技术相结合,以微带天线作为标签天线,接收RFID阅读器发射的能量,激活RFID的标签芯片,芯片再通过信号调制技术,消除环境中的噪声干扰,并将天线谐振频率随应变变化信息返回阅读器,实现无源无线的应变检测.分别设计了插入馈电式和边缘馈电式2种RFID微带天线传感器,利用HFSS电磁仿真软件对二者进行了结构和参数优化设计;利用COMSOL仿真软件,通过固体力学和电磁学相耦合的仿真分析,明确了不同应变状态下,2种传感器谐振频率的偏移量与应变均呈线性关系,其仿真结果与理论值相吻合,满足结构应变测量的要求,为实验研究奠定了理论基础.展开更多
文摘In this paper, the numerical computation of resonant frequency of the two gap-coupled circular microstrip patch antenna loaded with shorting post by using cavity model is presented. The numerically computed results are compared with simulated results. The two gap-coupled circular microstrip patch antenna loaded with shorting post miniaturize the cross-sectional dimension of the radiating patch at the microwave frequency, which is useful for short range communications or contactless identification systems. The simulation has been performed using method-of-moments based commercially available simulator IE3D.
文摘In this paper,the gyrotropic bi-anisotropy of the chiral medium in substrate constitutive parameters(xc and hc)of a rectangular microstrip patch antenna is introduced in order to observe its effects on the complex resonant frequency and half-power bandwidth.The analysis is based on the full-wave spectral domain approach using the Moment Method,with sinusoidal type basis functions.The numerical calculations related to the dominant mode have been carried out,and it has been observed that the resonant frequency and the bandwidth are directly linked to the medium chirality.The new results can be considered as a generalisation form of the previously published work.
文摘In this paper, an analytical model for computing the resonant frequency of the gap-coupled ring microstrip patch antennas is developed. The analytical model is based upon the cavity model along with circuit theory. Using the field expressions and boundary conditions, the transcendental equation for the structure is developed. The analytically computed results are compared with the simulated results. The simulation work is carried out by using computer simulation technology(CST) microwave studio simulator.The comparison between simulated and computed results shows good agreement.
基金This work was in part supported by the International Partnership Program of Chinese Academy of Science(Grant No.154232KYSB20200016)the Suzhou Science and Technology Support Project(Grant No.SYG201905)+2 种基金the National Key Research and Development Program of China(Grant No.2020YFC2007400)H.C.acknowledges the supports provided by the National Science Foundation(NSF)(Grant No.ECCS-1933072)the National Heart,Lung,And Blood Institute of the National Institutes of Health under Award Number R61HL154215,and Penn State University.The partial support from the Center for Biodevices,the College of Engineering,and the Center for Security Research and Education at Penn State is also acknowledged.
文摘As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical deformations;thus,their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive.Here,a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability.The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting,whereas the rapid changing resonance frequency with deformations allows for wireless sensing.The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter(input power of−3 dBm)efficiently(i.e.,the receiving power higher than−100 dBm over a distance of 100 m)on human bodies even upon 25%stretching.The flexibility in structural engineering combined with the coupled mechanical-electromagnetic simulations,provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics.
文摘Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.
基金Supported by Natural Science Foundation of Fujian Province of China (2011J01348)the Science and Technique Major Program of Fujian Province (2010HZ-0004-1)
文摘The Volume-Surface Current Continuity Method (VSCCM) is presented to analyze electromagnetic radiation from microstrip antenna. The microstrip antenna is discretized into small triangular patches on conducting surface and tetrahedral volume cells in dielectric region. The Method of Moments (MoM) is applied to solve the integral equation. An equation contains the restriction relation between the volume and surface current coefficient is derived from the current continuity equation at those parts where the conducting surface is in contact with the dielectric material. A simple equivalent strip model is introduced in the treatment of the feeding probe in VSCCM. The VSCCM can reduce the unknowns required to be solved in MoM, as well as the condition number of the matrix equation. Numerical results are given to validate the accuracy and efficiency of this method.
文摘Simple approximate formulas of near field for an element current in microstrip struc-ture are derived by using the exact formulas consisting of integrals of Sommerfeld type.Resultscalculated with these formulas are compared with those obtained by numerically calculating Som-merfeld integrals.It is shown that these formulas are valid for small ρ/λ and have no limitationof layer thickness and loss.
文摘Based on the integral equation formulations and the moment method, a novel closed form solution for analyzing the mutual coupling effect between the cylindrical comformal rectangular microstrip patch antennas is presented. By using this algorithm, the elements of the impedance matrix and exciting vector are cast into closed forms, thus the computational efficiency is improved dramatically. Numerical results are presented to verify the validity and reliability of the algorithm.
文摘Today's antennas have to operate in multiple resonant frequencies to satisfy the need of recent advances in communication technologies.This paper presents split ring resonator based triangular multiband antenna whose antenna performance is enhanced with the help of frequency selective surfaces(FSSs).The antenna has multiple resonances at S,C,and X bands.An array of 4×3 crisscross-shaped unit cells are arranged to form the FSS layer.The antenna is fed with a microstrip line feeding technique.The proposed antenna operates at 3.5 GHz,4.1 GHz,5.5GHz,9.4GHz,and 9.8 GHz with a better return loss and gain.Simulated and measured results yield a good match.
文摘为了研究应变传感器的无线检测技术,提出一种基于无线射频识别(radio frequency identification,RFID)微带天线应变传感器的无线检测方法,将超高频RFID技术与微带天线技术相结合,以微带天线作为标签天线,接收RFID阅读器发射的能量,激活RFID的标签芯片,芯片再通过信号调制技术,消除环境中的噪声干扰,并将天线谐振频率随应变变化信息返回阅读器,实现无源无线的应变检测.分别设计了插入馈电式和边缘馈电式2种RFID微带天线传感器,利用HFSS电磁仿真软件对二者进行了结构和参数优化设计;利用COMSOL仿真软件,通过固体力学和电磁学相耦合的仿真分析,明确了不同应变状态下,2种传感器谐振频率的偏移量与应变均呈线性关系,其仿真结果与理论值相吻合,满足结构应变测量的要求,为实验研究奠定了理论基础.