期刊文献+
共找到495篇文章
< 1 2 25 >
每页显示 20 50 100
Mechanical properties and microstructural evolution of rheocast A356 semi-solid slurry prepared by annular electromagnetic stirring 被引量:1
1
作者 Mohammad Taghi Asadi Khanouki 《China Foundry》 SCIE CAS CSCD 2023年第4期315-328,共14页
Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase a... Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture. 展开更多
关键词 semi-solid slurry annular electromagnetic stirring rheocast A356 aluminum alloy microstructural evolution mechanical properties magnetic flux density
下载PDF
Recent research progress on the phase-field model of microstructural evolution during metal solidification 被引量:3
2
作者 Kaiyang Wang Shaojie Lv +6 位作者 Honghui Wu Guilin Wu Shuize Wang Junheng Gao Jiaming Zhu Xusheng Yang Xinping Mao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2095-2111,共17页
Solidification structure is a key aspect for understanding the mechanical performance of metal alloys,wherein composition and casting parameters considerably influence solidification and determine the unique microstru... Solidification structure is a key aspect for understanding the mechanical performance of metal alloys,wherein composition and casting parameters considerably influence solidification and determine the unique microstructure of the alloys.By following the principle of free energy minimization,the phase-field method eliminates the need for tracking the solid/liquid phase interface and has greatly accelerated the research and development efforts geared toward optimizing metal solidification microstructures.The recent progress in the application of phasefield simulation to investigate the effect of alloy composition and casting process parameters on the solidification structure of metals is summarized in this review.The effects of several typical elements and process parameters,including carbon,boron,silicon,cooling rate,pulling speed,scanning speed,anisotropy,and gravity,on the solidification structure are discussed.The present work also addresses the future prospects of phase-field simulation and aims to facilitate the widespread applications of phase-field approaches in the simulation of microstructures during solidification. 展开更多
关键词 solidification process phase-field models microstructure evolution alloy composition casting process parameters
下载PDF
Microstructural evolution of ultra-high strength Al-Zn-Cu-Mg-Zr alloy containing Sc during homogenization 被引量:11
3
作者 李文斌 潘清林 +2 位作者 肖艳苹 何运斌 刘晓艳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2127-2133,共7页
The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectr... The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),X-ray diffraction(XRD) and differential scanning calorimetry(DSC).The results show that severe dendritic segregation exists in Al-Zn-Cu-Mg-Sc-Zr alloy ingot.There are a lot of eutectic phases at grain boundary and the distribution of the main elements varies periodically along interdendritic region.The main eutectic phases at grain boundary are Al7Cu2Fe phase and T(Al2Mg3Zn3).The residual phases are dissolved into the matrix gradually during homogenization with increasing temperature and prolonging holding time,which can be described by a constitutive equation in exponential function.The overburnt temperature of the alloy is 473.9 ℃.The optimum parameters of homogenization are 470 ℃ and 24 h,which is consistent with the result of homogenization kinetic analysis. 展开更多
关键词 Al-Zn-Cu-Mg-Sc-Zr alloy HOMOGENIZATION microstructural evolution overburnt temperature homogenization kinetics
下载PDF
Microstructural evolution of Mg, Ag and Zn micro-alloyed Al-Cu-Li alloy during homogenization 被引量:11
4
作者 刘晴 朱瑞华 +4 位作者 李劲风 陈永来 张绪虎 张龙 郑子樵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期607-619,共13页
The microstructural evolution of a Mg, Ag and Zn micro-alloyed Al?3.8Cu?1.28Li (mass fraction, %) alloy ingot during two-step homogenization was examined in detail by optical microscopy (OM), differential scanning cal... The microstructural evolution of a Mg, Ag and Zn micro-alloyed Al?3.8Cu?1.28Li (mass fraction, %) alloy ingot during two-step homogenization was examined in detail by optical microscopy (OM), differential scanning calorimetry (DSC), electron probe micro-analysis (EPMA) and X-ray diffraction (XRD) methods. The results show that severe dendritic segregation exists in the as-cast ingot. There are many secondary phases, includingTB(Al7Cu4Li),θ(Al2Cu),R(Al5CuLi3) andS(Al2CuMg) phases, and a small amount of (Mg+Ag+Zn)-containing and AlCuFeMn phases. The fractions of intermetallic phases decrease sharply after 2 h of second-step homogenization. By prolonging the second-step homogenization time, theTB,θ,R,S and (Mg+Ag+Zn)-containing phases completely dissolve into the matrix. The dendritic segregation is eliminated, and the homogenization kinetics can be described by a constitutive equation in exponential function. However, it seems that the AlCuFeMn phase is separated into Al7Cu2Fe and AlCuMn phases, and the size of Al7Cu2Fe phase exhibits nearly no change when the second-step homogenization time is longer than 2 h. 展开更多
关键词 Al-Cu-Li alloy HOMOGENIZATION microstructural evolution Al_7Cu_2Fe AlCuMn
下载PDF
Microstructural evolution of AZ61 magnesium alloy predeformed by ECAE during semisolid isothermal treatment 被引量:11
5
作者 姜巨福 林鑫 +2 位作者 王迎 曲建俊 罗守靖 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期555-563,共9页
The microstructural evolution of AZ61 magnesium alloy predeformed by equal channel angular extrusion(ECAE) during semisolid isothermal treatment(SSIT) was investigated by means of optical metalloscopy and image an... The microstructural evolution of AZ61 magnesium alloy predeformed by equal channel angular extrusion(ECAE) during semisolid isothermal treatment(SSIT) was investigated by means of optical metalloscopy and image analysis equipment.The process involved application of ECAE to as-cast alloy at 310 ℃ to induce strain prior to heating in the semisolid region for different time lengths.The results show that extrusion pass,isothermal temperature and processing route have an influence on microstructural evolution of predeformed AZ61 magnesium alloy during SSIT.With the increase of extrusion pass,the solid particle size is reduced gradually.When isothermal temperature increases from 530 ℃ to 560 ℃,the average particle size increases from 22 μm to 35 μm.When isothermal temperature is 575 ℃,the average particle size decreases.The particle size of microstructure of AZ61 magnesium alloy predeformed by ECAE at BC during SSIT is the finest. 展开更多
关键词 AZ61 magnesium alloy semisolid isothermal treatment equal channel angular extrusion microstructural evolution
下载PDF
Effect of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi shape memory alloy 被引量:6
6
作者 江树勇 赵亚楠 +2 位作者 张艳秋 胡励 梁玉龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3658-3667,共10页
As-received nickel-titanium (NiTi) shape memory alloy with a nominal composition of Ni50.9Ti49.1 (mole fraction,%) was subjected to solution treatment at 1123 K for 2 h and subsequent aging for 2 h at 573 K, 723 K... As-received nickel-titanium (NiTi) shape memory alloy with a nominal composition of Ni50.9Ti49.1 (mole fraction,%) was subjected to solution treatment at 1123 K for 2 h and subsequent aging for 2 h at 573 K, 723 K and 873 K, respectively. The influence of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi alloy was systematically investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and compression test. Solution treatment contributes to eliminating the Ti2Ni phase in the as-received NiTi sample, in which the TiC phase is unable to be removed. Solution treatment leads to ordered domain of atomic arrangement in NiTi alloy. In all the aged NiTi samples, the Ni4Ti3 precipitates, the R phase and the B2 austenite coexist in the NiTi matrix at room temperature, while the martensitic twins can be observed in the NiTi samples aged at 873 K. In the NiTi samples aged at 573 and 723 K, the fine and dense Ni4Ti3 precipitates distribute uniformly in the NiTi matrix, and thus they are coherent with the B2 matrix. However, in the NiTi sample aged at 873 K, the Ni4Ti3 precipitates exhibit the very inhomogeneous size, and they are coherent, semi-coherent and incoherent with the B2 matrix. In the case of aging at 723 K, the NiTi sample exhibits the maximum yield strength, where the fine and homogeneous Ni4Ti3 precipitates act as the effective obstacles against the dislocation motion, which results in the maximum critical resolved shear stress for dislocation slip. 展开更多
关键词 NiTi alloy shape memory alloy microstructural evolution mechanical properties solution treatment AGING
下载PDF
Microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment 被引量:7
7
作者 李波 潘清林 +2 位作者 史运嘉 李晨 尹志民 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3568-3574,共7页
The microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment was studied by means of metallographic analysis, scanning electron microscopy (SEM), energy dispersive X-ray... The microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment was studied by means of metallographic analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and differential scanning calorimetry (DSC). The results show that serious dendritic segregation exists in studied alloy ingot. There are many eutectic phases with low melting-point at grain boundary and the distribution of main elements along interdendritic region varies periodically. Elements Zn, Mg and Cu distribute unevenly from grain boundary to the inside of alloy. With increasing the homogenization temperature or prolonging the holding time, the residual phases are dissolved into matrix α(Al) gradually during homogenization treatment, all elements become more homogenized. The overburnt temperature of studied alloy is 476.7 °C. When homogenization temperature increases to 480 °C, some spherical phases and redissolved triangular constituents at grain boundaries can be easily observed. Combined with microstructural evolution and differential scanning calorimeter, the optimum homogenization parameter is at 470 °C for 24 h. 展开更多
关键词 Al-Zn-Mg-Sc-Zr alloy dendritic segregation HOMOGENIZATION residual phases overburnt temperature microstructural evolution
下载PDF
Microstructural evolution of AZ91 magnesium alloy during extrusion and heat treatment 被引量:4
8
作者 李静媛 谢建新 +1 位作者 金军兵 王智祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1028-1034,共7页
Microstructural evolution of AZ91 magnesium alloy was investigated during homogenizing annealing treatment, hot extrusion and ageing treatment, respectively. The results exhibited that both the divorced eutectic β-Mg... Microstructural evolution of AZ91 magnesium alloy was investigated during homogenizing annealing treatment, hot extrusion and ageing treatment, respectively. The results exhibited that both the divorced eutectic β-Mg17Al12 and the precipitated β-Mg17Al12 phases appeared in the as-cast alloy. The β-Mg17Al12 phase dissolved into α-Mg matrix mostly and the structure kept fine after the optimized homogenization treatment at 380 °C for 15 h. Dynamic recrystallization and consequent grain refinement occurred during extrusion. The banded β-Mg17Al12 precipitates paralleled to the extrusion direction were observed after ageing treatment. The banded precipitation should be attributed to the solidification segregation which was elongated during the subsequent extrusion. Furthermore, the effects of temperature, holding time of homogenization and ageing treatment, and extrusion processing parameters on the microstructural evolution of AZ91 alloy were also discussed in details according to the experimental results. 展开更多
关键词 AZ91 alloy microstructural evolution Mg17Al12 phase heat treatment EXTRUSION
下载PDF
Microstructural evolution of Al-0.66Mg-0.85Si alloy during homogenization 被引量:2
9
作者 闫丽珍 张永安 +4 位作者 李锡武 李志辉 王锋 刘红伟 熊柏青 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期939-945,共7页
The microstructural evolution of Al-0.66Mg-0.85Si alloy was investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimet... The microstructural evolution of Al-0.66Mg-0.85Si alloy was investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The as-cast microstructure is typical dendritical structure, consisting of α(Al), Al(FeMn)Si, Mg2Si, AlCuMgSi and Si phases. The electron diffraction analyses indicate that the Al(FeMn)Si phase is Al15(FeMn)3Si2 and the AlCuMgSi phase is Q(Al1.9CuMg4.1Si3.3). There are two kinds of Mg2Si phases in the as-cast microstructure. One is formed in the casting process, and the other is formed in the cooling process after casting process is finished. The phases have different crystal structures. After homogenization treatment at 545 ℃ for 20 h, Mg2Si, Si and Q intermetallic compounds are dissolved into matrix completely, and the remaining phases are α(Al) and Al15(FeMn)3Si2. The size of Al15(FeMn)3Si2 phase is decreased, and the phase is spheroidized and distributes along grain boundary discontinuously. The Zn-containing phases are not found during solidification and homogenization process. 展开更多
关键词 Al-Mg-Si alloy microstructural evolution HOMOGENIZATION intermetallic compound
下载PDF
Hot deformation behavior and microstructural evolution of Al-Zn-Mg-0.25Sc-Zr alloy during compression at elevated temperatures 被引量:2
10
作者 张志野 潘清林 +2 位作者 周坚 刘晓艳 陈琴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1556-1562,共7页
The hot deformation behavior of Al-Zn-Mg-0.25Sc-Zr alloy and its microstructural evolution were investigated by isothermal axisymmetric hot compression tests at temperatures from 340 to 500°C and strain rates ran... The hot deformation behavior of Al-Zn-Mg-0.25Sc-Zr alloy and its microstructural evolution were investigated by isothermal axisymmetric hot compression tests at temperatures from 340 to 500°C and strain rates ranging from 0.001 to 10 s -1 .The steady flow stress increased with increasing the strain rate or decreasing the deformation temperature,which can be described by a hyperbolic-sine constitutive equation with the deformation activation energy of 150.25 kJ/mol.The tendency of dynamic recrystallization enhanced at high deforming temperatures and low strain rates,which corresponded to low Z values.With decreasing Z value,the main softening mechanism of the alloy transformed from dynamic recovery to dynamic recrystallization, correspondingly,the subgrain size increased and the dislocation density decreased. 展开更多
关键词 Al-Zn-Mg-Sc-Zr alloy hot deformation flow behavior microstructural evolution
下载PDF
Influence of rapid solidification on Sn-8Zn-3Bi alloy characteristics and microstructural evolution of solder/Cu joints during elevated temperature aging 被引量:2
11
作者 赵国际 文光华 盛光敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期234-240,共7页
The effects of rapid solidification on the microstructure and melting behavior of the Sn-8Zn-3Bi alloy were studied. The evolution of the microstructuraI characteristics of the solder/Cu joint after an isothermal agin... The effects of rapid solidification on the microstructure and melting behavior of the Sn-8Zn-3Bi alloy were studied. The evolution of the microstructuraI characteristics of the solder/Cu joint after an isothermal aging at 150 ℃ was also analyzed to evaluate the interconnect reliability. Results showed that the Bi in Sn-8Zn-3Bi solder alloy completely dissolved in the Sn matrix with a dendritic structure after rapid solidification. Compared with as-solidified Sn-8Zn-3Bi solder alloy, the melting temperature of the rapid solidified alloy rose to close to that of the Sn-Zn eutectic alloy due to the extreme dissolution of Bi in Sn matrix. Meanwhile, the adverse effect on melting behavior due to Bi addition was decreased significantly. The interfacial intermetallic compound (IMC) layer of the solder/Cu joint was more compact and uniform. Rapid solidification process obviously depressed the formation and growth of the interfacial IMC during the high-temperature aging and improved the high-temperature stability of the Sn-8Zn-3Bi solder/Cu joint. 展开更多
关键词 rapid solidification Sn-8Zn-3Bi solder melting characteristic AGING microstructural evolution
下载PDF
Microstructural evolution of(TiAl)+Nb+W+B alloy 被引量:5
12
作者 黄岚 P.K.LIAW +2 位作者 C.T.LIU 刘咏 黄劲松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2192-2198,共7页
A newly designed TiAl alloy containing W,Nb,and B was produced through magnetic-flotation-melting method.Mass production of this TiAl-based alloy,15 kg ingot size,which is quite different from the 0.05 kg small ingot ... A newly designed TiAl alloy containing W,Nb,and B was produced through magnetic-flotation-melting method.Mass production of this TiAl-based alloy,15 kg ingot size,which is quite different from the 0.05 kg small ingot produced by arc-melting,has a large effect on the metallurgical properties,such as the grain size and the phase structures of the alloy.Heat treatments were carefully designed in order to reduce the amount of the high-temperature remaining β phase in the alloy,and to obtain optimal microstructures for mechanical behavior studies.A room-temperature ductility of 1.9% was obtained in the cast TiAl-based alloy after the appropriate heat treatment.The mechanical behavior of the large ingot through mass production of the TiAl-based alloy was largely improved by the alloy design and subsequent heat treatments. 展开更多
关键词 TiAl intermetallics W B tensile ductility microstructural evolution large ingot
下载PDF
Effect of ball milling on microstructural evolution during partial remelting of6061 aluminum alloy prepared by cold-pressing of alloy powders 被引量:2
13
作者 陈玉狮 陈体军 +1 位作者 张素卿 李普博 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2113-2121,共9页
The effect of ball milling on the microstructural evolution was investigated during partial remelting of 6061 aluminum alloy prepared by cold-pressing of atomized alloy powders.The results indicate that the microstruc... The effect of ball milling on the microstructural evolution was investigated during partial remelting of 6061 aluminum alloy prepared by cold-pressing of atomized alloy powders.The results indicate that the microstructural evolution of 6061 aluminum alloy can be divided into three stages,the dissolution of eutectic phases and the coarsening and growth behavior of the resulting grains,structural separation and spheroidization of primary particles,and the final coarsening behavior of the particles.Compared with the alloy without ball milling,ball milling accelerates the first stage of microstructural evolution due to the energy stored in the powders,but the latter two stages are slowed down because of the formation of large-sized powders.Moreover,the finer the as-cold-pressed microstructure is,the smaller and more spherical the primary particles in the final semisolid microstructure are.Furthermore,properly elevating the heating temperature is beneficial for obtaining small and spheroidal particles. 展开更多
关键词 6061 aluminum alloy ball milling powder thixoforming partial remelting microstructural evolution
下载PDF
Microstructural evolution during homogenization of DC cast 7085 aluminum alloy 被引量:1
14
作者 史运嘉 潘清林 +2 位作者 李梦佳 刘志铭 黄志其 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3560-3568,共9页
The microstructural evolution of a DC cast 7085 alloy during homogenization treatment was investigated by optical microscopy, scanning electron microscopy, energy dispersive X-ray spectrometry (EDS), differential scan... The microstructural evolution of a DC cast 7085 alloy during homogenization treatment was investigated by optical microscopy, scanning electron microscopy, energy dispersive X-ray spectrometry (EDS), differential scanning calorimeter (DSC) and X-ray diffraction (XRD). The results showed that serious dendritic segregation existed in the as-cast 7085 alloy. Numerous eutectic microstructures and phases were observed at the grain boundary. During homogenization process, eutecticα(Al)+T(AlZnMgCu) microstructure gradually was dissolved into matrix. IntermetallicS(Al2CuMg) phase formed and grew along the eutectic microstructure and disappeared into the matrix completely when it was homogenized at 460 °C for 24 h. It could be found that the evolution of primary eutectic structure of 7085 alloy consisted of three processes, dissolution of eutecticα+T microstructure, phase transformation fromT phase toS phase and the dissolution ofS phase. The optimum homogenization parameter was at 470 °C for 24 h. 展开更多
关键词 7085 aluminum alloy homogenization treatment microstructural evolution intermetallic phase
下载PDF
Effect of solution plus aging heat treatment on microstructural evolution and mechanical properties of near-β titanium alloy 被引量:22
15
作者 Chuan WU Mei ZHAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期997-1006,共10页
The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show ... The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show that the volume fraction of the primary α(αp) phase decreases with the increase of solution temperature, and the length of the secondary α phase (αs) decreases while its width increases with the increase of aging temperature. Yield and tensile strengths decrease with the increase of solution temperature, while increase with the increase of aging temperature. A good balance of tensile strength and ductility of the alloy is obtained under solution of 800℃ for 2 h plus aging of 640℃ for 8 h, in which the tensile strength is 1434 MPa and the elongation is 7.7%. The coarsening αs phase makes crack propagation paths deflected and tortuous, which increases the crack propagation resistance and improves the ductility and fracture toughness. 展开更多
关键词 Ti.5Al.5Mo.5V.3Cr.1Zr titanium alloy hot treatment SOLUTION AGING microstructural evolution mechanical properties fracture mechanism
下载PDF
Microstructural evolution of new type Al-Zn-Mg-Cu alloy with Er and Zr additions during homogenization 被引量:14
16
作者 Hao WU Sheng-ping WEN +4 位作者 Jun-tai LU Zhen-peng MI Xian-long ZENG Hui HUANG Zuo-ren NIE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1476-1482,共7页
A comprehensive study on the microstructural evolution of a new type Al-Zn-Mg-Cu-Er-Zr alloy duringhomogenization was conducted by optical microscope,scanning electron microscope,transmission electron microscopy and X... A comprehensive study on the microstructural evolution of a new type Al-Zn-Mg-Cu-Er-Zr alloy duringhomogenization was conducted by optical microscope,scanning electron microscope,transmission electron microscopy and X-raydiffraction analysis.The results show that serious segregation exists in as-cast alloy,and the primary phases are T(AlZnMgCu),S(Al2CuMg)and Al8Cu4Er,which preferentially locate in the grain boundary regions.The soluble T(AlZnMgCu)and S(Al2CuMg)phases dissolve into the matrix gradually during single-stage homogenized at465°C with prolonging holding time,but the residualAl8Cu4Er phase cannot dissolve completely.Compared with the single-stage homogenization,both a finer particle size and a highervolume fraction of L12-structured Al3(Er,Zr)dispersoids can be obtained in the two-stage homogenization process.A suitablehomogenization scheme for the present alloy is(400°C,10h)+(465°C,24h),which is consistent with the results of homogenizationkinetic analysis. 展开更多
关键词 Al-Zn-Mg-Cu-Er-Zr alloy HOMOGENIZATION microstructural evolution primary phases Al3(Er Zr) particles
下载PDF
Microstructural evolution and mechanical properties of Mg-5Y-5Gd-xNd-0.5Zr magnesium alloys at different states 被引量:11
17
作者 LI Yongjun ZHANG Kui +2 位作者 ZHANG Ya LI Xinggang MA Minglong 《Rare Metals》 SCIE EI CAS CSCD 2010年第3期317-322,共6页
The microstructural evolution and mechanical properties of Mg-5Y-5Gd-xNd-0.5Zr magnesium alloys at different states were studied.The results reveal that island compounds at the grain boundaries of the as-cast alloys m... The microstructural evolution and mechanical properties of Mg-5Y-5Gd-xNd-0.5Zr magnesium alloys at different states were studied.The results reveal that island compounds at the grain boundaries of the as-cast alloys mainly were Mg24Y5,Mg41Nd5,and Mg5Gd phases.After homogenization at 808 K for 24 h,the distribution of the island compounds became discrete and Mg5Gd phases mostly decomposed and dissolved.With hot extrusion,the grain size was refined to about 20 μm on average,and both the strength and elongation were greatly improved.After ageing at 523 K for 5 h,the strength of different extruded alloys largely increased but the elongation decreased.With the increase of neodymium content,the strength of the alloys at different states increased.The content of neodymium element had an obvious effect on the elongation of the designed alloys.In the designed alloys,the Mg-5Y-5Gd-2.2Nd-0.5Zr alloy exhibited the best combination properties and its ultimate tensile strength,yield strength,and elongation could reach 380 MPa,285 MPa,and 9.0%,respectively. 展开更多
关键词 magnesium alloys NEODYMIUM EXTRUSION HOMOGENIZATION microstructural evolution mechanical properties
下载PDF
The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet 被引量:14
18
作者 Qingshan Yang Bin Jiang +5 位作者 Bo Song Zujian Yu Dewei He Yanfu Chai Jianyue Zhang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第2期446-458,共13页
The grain orientation control via twinning activity on deformation features is of great significance to offer a key insight into understanding the deformation mechanism of Mg alloy sheets.The{10–12}twinning were perf... The grain orientation control via twinning activity on deformation features is of great significance to offer a key insight into understanding the deformation mechanism of Mg alloy sheets.The{10–12}twinning were performed by pre-strain paths,i.e.,tension(6%)and compression(5%)perpendicular to the c-axis along extrusion direction(ED),to investigate the microstructural evolution and mechanical properties of AZ31 Mg alloy sheets.The distinction in the texture evolution and strain hardening behavior was illustrated in connection with the pre-strain paths for the activities of twinning and slip.The result shows that the activation of the deformation mode was closely bound up with the grain orientation and the additional applied load direction.The{10–12}twin-texture components with c-axis//ED were generated by precompression,which can provide an appropriate alternative to accommodate the thin sheet thickness strain and enhance the room temperature formability of Mg alloy sheet. 展开更多
关键词 Mg alloy Orientation control microstructural evolution TEXTURE Stretch formability
下载PDF
Microstructural evolution,mechanical properties,and corrosion resistance of a heat-treated Mg alloy for the bio-medical application 被引量:16
19
作者 Mohammad Janbozorgi Kimia Karimi Taheri Ali Karimi Taheri 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第1期80-89,共10页
During the recent years,some Mg based alloys have extensively been considered as a new generation of degradable and absorbable bio-medical materials.In this work,the Mg-2Zn-1Gd-1Ca(wt%)alloy as a new metallic bio-mate... During the recent years,some Mg based alloys have extensively been considered as a new generation of degradable and absorbable bio-medical materials.In this work,the Mg-2Zn-1Gd-1Ca(wt%)alloy as a new metallic bio-material was produced by the casting process followed by the heat treatment.The samples of the alloy were solution treated at temperatures of 500,550,and 600°C and then quench aged at temperatures of 125,150,and 175°C.The results of SEM-EDS examinations indicated that the alloy microstructure consists ofα-Mg matrix and the Ca_(2)Mg_(6)Zn_(3)and Mg_(3)Gd_(2)Zn_(3)secondary phases.With regard to the results of Vickers hardness test,the temperatures of 500°C and 150°C were selected as the optimum solutionizing and aging temperatures,respectively.Moreover,the dissolution of casting precipitates and production of lattice distortion occurring after the solution treatment led to the reduction in ultimate shear strength up to 21%.But,the precipitation hardening and morphological changes taking place during the aging treatment improved the ultimate shear strength up to 32%.Furthermore,the results of electro-chemical and weight-loss measurements in a simulated body fluid indicated that the heat-treated alloy is a promising candidate for the Mg based alloys recently considered for the bio-medical applications. 展开更多
关键词 Mg alloys Bio-medical applications microstructural evolution Mechanical properties Corrosion resistance
下载PDF
Microstructural Evolution of Pearlite in Eutectoid Fe-C Alloys during Severe Cold Rolling 被引量:9
20
作者 WantangFU YiXIONG +3 位作者 JunZHAO YongLI T.Furuhara T.Maki 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第1期25-27,共3页
The microstructural evolution of pearlite during severe cold rolling in Fe-0.8C binary alloy and Fe-1Mn-0.8C ternary alloys was investigated by using SEM, TEM and XRD etc. The results show that the deformed pearlite c... The microstructural evolution of pearlite during severe cold rolling in Fe-0.8C binary alloy and Fe-1Mn-0.8C ternary alloys was investigated by using SEM, TEM and XRD etc. The results show that the deformed pearlite consists of irregularly bent lamella, coarse lamella with shear-band and fine lamella. As the rolling reduction increases, the proportion of fine lamella increases. The strong plastic deformation, amorphization and dissolution of cementite take place during the severe cold rolling. The maximum carbon content in ferrite reaches 0.15 mass% after 90% cold rolling. 展开更多
关键词 PEARLITE Severe cold rolling microstructural evolution DISSOLUTION Amorphization Fe-C alloy
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部