期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Microstructure and Deformation Behavior of Ti-10V-2Fe-3Al Alloy during Hot Forming Process 被引量:1
1
作者 管仁国 ZHAO Zhanyong +1 位作者 Choi KS Lee CS 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1332-1337,共6页
The microstructure evolution and formability of Ti-10V-2Fe-3Al alloy related to the initial microstructures and processing variables were investigated during hot forming process. The experimental results show that the... The microstructure evolution and formability of Ti-10V-2Fe-3Al alloy related to the initial microstructures and processing variables were investigated during hot forming process. The experimental results show that the α-phase growth is controlled by solute diffusion during the heat treatment processes. Four different microstructures were established by combinations of several heat treatments, and Ti-10V-2Fe-3Al alloy shows excellent formability both above and below the β transus temperature. The alloy possesses low deformation resistance and active restoration mechanism during the deformation. A constitutive equation describing the hot deformation behavior of Ti-10V-2Fe-3Al alloy was obtained. Higher fl ow stress was observed for the acicular morphology of α phase in microstructures with large aspect ratios as compared with that of small aspect ratios. Due to the dynamic recovery in soft β phase, and the dynamic recrystallization and breakage of acicular α-phase, fl ow softening occurred signifi cantly during deformation. Dynamic recrystallization also occurred especially in the severely deformed regions of forged parts. 展开更多
关键词 Ti-10V-2Fe-3Al alloy microstructure evolution hot forging constitutive equation recovery dynamic recrystallization
下载PDF
Review of collapse triggering mechanism of collapsible soils due towetting 被引量:21
2
作者 Ping Li Sai Vanapalli Tonglu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第2期256-274,共19页
Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible t... Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting.Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils.For this reason,collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world.This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits.The collapse mechanism studies are summarized under three different categories,i.e.traditional approaches,microstructure approach,and soil mechanics-based approaches.The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature.The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior.Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils.Such studies would be more valuable for use in conventional geotechnical engineering practice applications. 展开更多
关键词 Collapse mechanism microstructure constitutive relationships Compacted soils Natural loess soils Elastoplastic models Yield surface Structural strength
下载PDF
High-temperature deformation behavior of a beta Ti-3.0Al-3.5Cr-2.0Fe-0.1B alloy 被引量:7
3
作者 Wen-Tao Qu Xu-Guang Sun +2 位作者 Song-Xiao Hui Zhen-Guo Wang Yan Li 《Rare Metals》 SCIE EI CAS CSCD 2018年第3期217-224,共8页
The high-temperature deformation behavior of a beta Ti-3.0 Al-3.5 Cr-2.0 Fe-0.1 B alloy was investigated by a Gleeble-1500 D thermal simulator. The height reduction was 50%, corresponding to a true strain of 0.693. Th... The high-temperature deformation behavior of a beta Ti-3.0 Al-3.5 Cr-2.0 Fe-0.1 B alloy was investigated by a Gleeble-1500 D thermal simulator. The height reduction was 50%, corresponding to a true strain of 0.693. The strain rate ranging from 0.01 to 10.00 s^-1 and the deformation temperature ranging from 800 to 950 ℃ were considered.The flow stress and the apparent activation energy for deformation, along with the constitutive equation, were used to analyze the behavior of the Ti-3.0 Al-3.5 Cr-2.0 Fe-0.1 B alloy. The processing map was established. The effect of strain rate on the microstructure at 850 ℃ was evaluated.The flow stress-strain curves indicated that the peak flow stresses increased along with an increase in the strain rate and decreased as the deformation temperature increased.Based on the true stress-true strain curves, the constitutive equation was established and followed as the ε= 6.58×10-(10)[sinh(0.0113σ)]-(3.44)exp(-245481.3/RT). The processing map exhibited the "unsafe" region at the strain rate of10 s^-1 and the temperature of 850 ℃,and the rest region was "safe". The deformation microstructure demonstrated that both dynamic recovery(DRV) and dynamic recrystallization(DRX) existed during deformation. At the lower strain rate of 0.01 s^-1, the main deformation mechanism was the DRV, and the DRX was the dominant deformation mechanism at the higher strain rate of 1.00 s^-1. 展开更多
关键词 Titanium alloy Hot deformation constitutive equation Processing map microstructure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部