The effects of surface conditioning methods on the microtensile bond strength of Y-TZP ceramic were studied based on airborne particle abrasion and resin cements.Eight square-shaped(φ12 mm×5 mm high) Y-TZP cer...The effects of surface conditioning methods on the microtensile bond strength of Y-TZP ceramic were studied based on airborne particle abrasion and resin cements.Eight square-shaped(φ12 mm×5 mm high) Y-TZP ceramic were studied blocks(LAVATM,3M ESPE,USA) and flat occlusal dentin blocks were fabricated,pre-treated(airborne abrasion with 125μm Al2O3 particles,tribochemical silica coating with 110 μm Al2O3 particles modified by silica oxide),and bonded to each other using resin cements(Panavia F 2.0,RelyX Unicem).Thereafter the trilayer specimens were cut into microbar specimens with a bonding area of approximately 1.0±0.1 mm2 and then microtensile bond strength tests were performed.The Y-TZP ceramic following airborne particle abrasion with 125μm Al2O3 and silicoating,the surface roughness of Y-TZP and its surface silica content were confirmed to increase.Overall,the Y-TZP ceramic surface treatment with a tribochemical silica coating showed the highest microtensile bond strength of the phosphate monomer-based resin cement to Y-TZP ceramic(mean MPa=18.11±0.27(Panavia F 2.0),17.45±0.39(Rely X Unicem).In cases in which a silica coating was applied,there was no significant difference in the bonding strength depending on resin cements(P0.05).展开更多
Background The wet-bonding technique is recommended for the one-bottle dentin adhesive systems, but the moisture concept varies widely among the instructions of manufacturers as well as among investigators. The aim of...Background The wet-bonding technique is recommended for the one-bottle dentin adhesive systems, but the moisture concept varies widely among the instructions of manufacturers as well as among investigators. The aim of this study was to evaluate the effects of different dentin surface moisture on the microtensile bond strength (s) of an ethanol/water-based adhesive system and an acetone-based system to dentin. Methods Forty intact human premolars extracted for orthodontic reasons were used. Superficial occlusal flat dentin surfaces of these premolars were exposed, finished with wet 600-grit silicon carbide paper. Under four wet and dry conditions (overwet, blot dry, one-second dry and desiccated), resin composite was bonded to dentin by using Single Bond (SB) or Prime & Bond NT (PB) according to the manufacturers' instructions. The teeth were longitudinally sectioned in the “x” and “y” directions to obtain bonded beams with a cross-sectional area of 0. 81 mm^2 with a slow-speed diamond saw. The bonded specimens were tested in tension at a crosshead speed of 1 mm/min until failure of the bonds. Failure modes were observed with a scanning electron microscope. The mean bond strengths were analyzed by one-way ANOVA and Turkey's test. Results The bond strength of the overwet/SB, blot dry/SB, one-second dry/SB and desiccated/SB groups was 10.87 MPa, 22.47 MPa, 24.91 MPa and 12. 99 MPa, respectively. The bond strength of the overwet/PB, blot dry/PB, one-second dry/PB and desiccated/PB groups was 10.02 MPa, 20. 67 MPa, 21.82 MPa and 10. 09 MPa, respectively. For both SB and PB, the blot dry group and one-second dry group revealed significantly higher bond strengths than the overwet and desiccated groups (P 〈0.05). Conclusions In order to achieve the highest bond strength to dentin, keeping appropriately moist condition is critical for the one-bottle dentin adhesive systems with solvent. the dentin surface in an ethanol/water or acetone展开更多
Objective To investigate whether multiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin. Methods Twelve caries-free human primary molars were randomly divided into 2 gro...Objective To investigate whether multiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin. Methods Twelve caries-free human primary molars were randomly divided into 2 groups. In group 1, each tooth was hemisected into 2 halves. One half was assigned to the control subgroup 1, which was bonded with a commercially available one-step self-etching adhesive according to the manufacturer's instruc- tions; the other half was assigned to experimental subgroup 1, in which the adhesive was applied three times before light curing. In group 2, one split half tooth was bonded with a commercially available one-step self-etching adhesive according to the manufacturer's instructions; for the other half, three layers of adhesive were applied with each successive layer of light curing. Specimens were stored in 0.9% NaC1 containing 0.02% sodium azide at 37℃ for 18 months and then were subjected to microtensile bond strength test and the fracture mode analysis. Results When the adhesive was applied three times before light curing, the bond strength of the ex- perimental subgroup 1 was significantly higher than that of the control subgroup 1 (47.46__+13.91 vs. 38.12+11.21 MPa, P〈O.05). When using the technique of applying multiple layers of adhesive with each successive layer of light curing, no difference was observed in bond strength between the control subgroup and the experimental subgroup (39.40+8.87 vs. 40.87-+9.33 MPa, P〉O.05). Conclusion Multiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin when using the technique of light-curing after applying 3 layers of adhesive.展开更多
文摘The effects of surface conditioning methods on the microtensile bond strength of Y-TZP ceramic were studied based on airborne particle abrasion and resin cements.Eight square-shaped(φ12 mm×5 mm high) Y-TZP ceramic were studied blocks(LAVATM,3M ESPE,USA) and flat occlusal dentin blocks were fabricated,pre-treated(airborne abrasion with 125μm Al2O3 particles,tribochemical silica coating with 110 μm Al2O3 particles modified by silica oxide),and bonded to each other using resin cements(Panavia F 2.0,RelyX Unicem).Thereafter the trilayer specimens were cut into microbar specimens with a bonding area of approximately 1.0±0.1 mm2 and then microtensile bond strength tests were performed.The Y-TZP ceramic following airborne particle abrasion with 125μm Al2O3 and silicoating,the surface roughness of Y-TZP and its surface silica content were confirmed to increase.Overall,the Y-TZP ceramic surface treatment with a tribochemical silica coating showed the highest microtensile bond strength of the phosphate monomer-based resin cement to Y-TZP ceramic(mean MPa=18.11±0.27(Panavia F 2.0),17.45±0.39(Rely X Unicem).In cases in which a silica coating was applied,there was no significant difference in the bonding strength depending on resin cements(P0.05).
文摘Background The wet-bonding technique is recommended for the one-bottle dentin adhesive systems, but the moisture concept varies widely among the instructions of manufacturers as well as among investigators. The aim of this study was to evaluate the effects of different dentin surface moisture on the microtensile bond strength (s) of an ethanol/water-based adhesive system and an acetone-based system to dentin. Methods Forty intact human premolars extracted for orthodontic reasons were used. Superficial occlusal flat dentin surfaces of these premolars were exposed, finished with wet 600-grit silicon carbide paper. Under four wet and dry conditions (overwet, blot dry, one-second dry and desiccated), resin composite was bonded to dentin by using Single Bond (SB) or Prime & Bond NT (PB) according to the manufacturers' instructions. The teeth were longitudinally sectioned in the “x” and “y” directions to obtain bonded beams with a cross-sectional area of 0. 81 mm^2 with a slow-speed diamond saw. The bonded specimens were tested in tension at a crosshead speed of 1 mm/min until failure of the bonds. Failure modes were observed with a scanning electron microscope. The mean bond strengths were analyzed by one-way ANOVA and Turkey's test. Results The bond strength of the overwet/SB, blot dry/SB, one-second dry/SB and desiccated/SB groups was 10.87 MPa, 22.47 MPa, 24.91 MPa and 12. 99 MPa, respectively. The bond strength of the overwet/PB, blot dry/PB, one-second dry/PB and desiccated/PB groups was 10.02 MPa, 20. 67 MPa, 21.82 MPa and 10. 09 MPa, respectively. For both SB and PB, the blot dry group and one-second dry group revealed significantly higher bond strengths than the overwet and desiccated groups (P 〈0.05). Conclusions In order to achieve the highest bond strength to dentin, keeping appropriately moist condition is critical for the one-bottle dentin adhesive systems with solvent. the dentin surface in an ethanol/water or acetone
文摘Objective To investigate whether multiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin. Methods Twelve caries-free human primary molars were randomly divided into 2 groups. In group 1, each tooth was hemisected into 2 halves. One half was assigned to the control subgroup 1, which was bonded with a commercially available one-step self-etching adhesive according to the manufacturer's instruc- tions; the other half was assigned to experimental subgroup 1, in which the adhesive was applied three times before light curing. In group 2, one split half tooth was bonded with a commercially available one-step self-etching adhesive according to the manufacturer's instructions; for the other half, three layers of adhesive were applied with each successive layer of light curing. Specimens were stored in 0.9% NaC1 containing 0.02% sodium azide at 37℃ for 18 months and then were subjected to microtensile bond strength test and the fracture mode analysis. Results When the adhesive was applied three times before light curing, the bond strength of the ex- perimental subgroup 1 was significantly higher than that of the control subgroup 1 (47.46__+13.91 vs. 38.12+11.21 MPa, P〈O.05). When using the technique of applying multiple layers of adhesive with each successive layer of light curing, no difference was observed in bond strength between the control subgroup and the experimental subgroup (39.40+8.87 vs. 40.87-+9.33 MPa, P〉O.05). Conclusion Multiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin when using the technique of light-curing after applying 3 layers of adhesive.