Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched.The phase veloci...Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched.The phase velocities of Rayleigh wave are estimated from vertical component records and those of Love wave are estimated from three-component records of microtremors array using modified spatial auto-correlation method.Haskell matrix method is used in calculating Rayleigh and Love wave phase velocities,and the shallow S-wave velocity structure of two practical sites are estimated by means of a hybrid approach of Genetic Algorithm and Simplex.The results are compared with the PS logging data of the two sites,showing it is feasible to estimate the shallow S-wave velocity structure of practical site from the observation of microtremor array.展开更多
The Refraction Microtremor (ReMi) method is being used around the world by the geotechnical and geophysical community to determine shear-wave velocities. This is due to its faster, less expensive and accurate determin...The Refraction Microtremor (ReMi) method is being used around the world by the geotechnical and geophysical community to determine shear-wave velocities. This is due to its faster, less expensive and accurate determination of shear wave velocities, when compared to other methods used. Unlike standard crosshole and downhole techniques, ReMi does not require any drilling. It eliminates the problem of shear-wave source and quiet site that are pre-requisites for good seismic refraction surveys. In this paper we present refraction microtremors (ReMi) measurements done at sites underlain by different soil types in Egypt. The ReMi data were collected using standard refraction equipment employing 12, 24 or 48 channels. We used deep oceanographic noise and ambient noise including energy from power generators, pile drivers and traffic. The data were processed using the SeisOpt? ReMi? (? Optim, Inc.) software to reveal one-dimensional shear-wave velocity structures beneath the arrays. To access the validity of the method for the Egyptian soils, the shear-wave profiles obtained from the ReMi measurements were compared to downhole and crosshole data for different soils. Comparisons demonstrate the robustness of the ReMi technique for obtaining shear-wave velocities for different soil types in Egypt.展开更多
The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the sur...The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the surface geology. The Fourier transform was applied to the most stationary parts of the triaxial wave motion recordings for each individual site and applied the traditional Nakamura technique, namely, the horizontal to vertical spectral ratio (H/V) to retrieve the predominant shear wave period of vibration of the soil profiles above the bedrock. The results yield predominant long periods of about 3.0-4.0 s in the port area and the waterfront, 1.0-2.0 s in the central part of Kingston, 0.3-1.0 s in Portmore and very stiff soil conditions in the surrounding area of the city. The results coincide fairly well with previous geological studies in the region, geotechnical data in boreholes, gravimetric measurements and strong motion recordings, suggesting a high degree of amplification of ground motion in the whole period range of engineering interest. Additionally, the authors obtained the liquefaction vulnerability factor Kg proposed by Nakamura based on the H/V ratio of microtremors. The results suggest that the port area, the waterfront and the Port Royal are highly susceptible to liquefaction. Finally, the authors obtained fundamental periods of vibration based on microtremor measurements on the roof and the basement of four important buildings in the KMA and indicated future lines of research employing ambient noise measurements on structures.展开更多
The single-station microtremor method is one of the fastest,most reliable,and cheapest methods used to identify dynamic soil properties.This study utilizes 49 single-station microtremor measurements to identify the dy...The single-station microtremor method is one of the fastest,most reliable,and cheapest methods used to identify dynamic soil properties.This study utilizes 49 single-station microtremor measurements to identify the dynamic soil properties of the Hilalkent quarter of the Yakutiye district in Erzurum.Soil dominant frequency and the amplification factor were calculated by using the Nakamura horizontal/vertical spectral ratio(H/V)method.While the soil dominant frequency values varied between 0.4 Hz and 10 Hz,the soil amplification factor changed between 1 and 10.Higher H/V values were acquired with lower frequency values.The vulnerability index(K_(g))and shear strain parameters that are utilized to estimate the damage that may be caused by an earthquake were mapped.Especially in the west side of the study area,higher K_(g) values were observed.The shear strain map was created with 0.25 g,0.50 g and 0.75 g bedrock accelerations,and soil types that lost elasticity during an earthquake were identified.The average shear wave velocity for the first 30 m(V_(s30))was calculated.Finally,it was observed that the western part of the study area,which resulted in a higher period and higher H/V,higher K_(g) and lower V_(s30) values,presents a higher risk of damage during an earthquake.展开更多
It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the lan...It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the landslides and indicate the potential for future reactivation.This study examines the Deda ancient landslide,situated in the Chalong-ranbu fault zone,where creep deformation suggests a complex underground structure.By integrating remote sensing,field surveys,Audio-frequency Magnetotellurics(AMT),and Microtremor Survey Method(MSM)techniques,along with engineering geological drilling for validation,to uncover the landslide’s spatial feature s.The research indicates that a fault is developed in the upper part of the Deda ancient landslide,and the gully divides it into Deda landslide accumulation zoneⅠand Deda landslide accumulation zoneⅡin space.The distinctive geological characteristics detectable by MSM in the shallow subsurface and by AMT in deeper layers.The findings include the identification of two sliding zones in the Deda I landslide,the shallow sliding zone(DD-I-S1)depth is approximately 20 m,and the deep sliding zone(DD-I-S2)depth is 36.2-49.9 m.The sliding zone(DD-Ⅱ-S1)depth of the DedaⅡlandslide is 37.6-43.1 m.A novel MSM-based method for sliding zone identification is proposed,achieving less than 5%discrepancy in depth determination when compared with drilling data.These results provide a valuable reference for the spatial structural analysis of large-deepseated landslides in geologically complex regions like the eastern Tibetan Plateau.展开更多
The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks i...The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.展开更多
The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferenc...The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.展开更多
In this study,the Beibu earth fissure site in the northeastern part of Weihe Basin,which contains four nearly parallel earth fissures,was studied.A long straight microtremor measuring line,containing 49 measuring poin...In this study,the Beibu earth fissure site in the northeastern part of Weihe Basin,which contains four nearly parallel earth fissures,was studied.A long straight microtremor measuring line,containing 49 measuring points across four earth fissures,was established to investigate the dynamic response of this site using Fourier spectrum,response acceleration spectrum,Arias intensity,and HVSR analyses.The main results are as follows:(1)The fundamental frequencies of 44 measuring points obtained from HVSR analysis are concentrated within 1.67 Hz-2.25 Hz,and the existence of the earth fissures has little effect on the fundamental frequency changes.(2)There is an amplification effect near a single earth fissure.The dynamic responses are large at the measuring points near the earth fissure,and the values decrease with increasing distance from the earth fissure.In areas between two adjacent earth fissures,these values decrease and are even lower than those in sites without amplification effects.(3)In this earth fissure site,the general area(or less affected area)and affected areas were delineated based on the amplification effect.In engineering applications,construction design should avoid these affected areas and existing structures should be reinforced to satisfy the seismic fortification requirements.展开更多
On January 23rd 2005, a strong earthquake with moment magnitude (Mw 6.3) hit the Palu City (Central Sulawesi area). The earthquake involved an area more than 800 km along the Palu Koro fault zone. In order to char...On January 23rd 2005, a strong earthquake with moment magnitude (Mw 6.3) hit the Palu City (Central Sulawesi area). The earthquake involved an area more than 800 km along the Palu Koro fault zone. In order to characterize the seismic ground motion of alluvium layers existing in the Palu City, eight sites of mierotremor array measurements were performed. The shear wave velocity of the top layer is ≤ 300 m/s. Palu City had deposited on a thick alluvial layer in the coastal area. The subsurface geology also changes slowly from soft sedimentary layers in the coastal area to igneous intrusion and metamorphic rock in the mountains. Seismic strong ground motion was predicted based on the statistical Green's function method. Considering the damage produced by the 2005 Palu earthquake (Mw 6.3), we also estimated peak ground acceleration distribution at Palu City, with values ranging from 100 gal up to 500 gal on the PGA (peak ground acceleration) scale. Peak ground velocity becomes more than 0.3 m/s in some areas, which may likely lead to severe damage to buildings.展开更多
Past researchers have anticipated the occurrence of a great earthquake in the central Himalayas in the near future.This may cause serious damage in the Kathmandu Valley,which sits on an ancient lake bed zone,with lacu...Past researchers have anticipated the occurrence of a great earthquake in the central Himalayas in the near future.This may cause serious damage in the Kathmandu Valley,which sits on an ancient lake bed zone,with lacustrine sediments of more than 500 m depth.In this study,the predominant frequency of ground motion is evaluated using the Horizontal-to-Vertical (H/V) spectral ratio technique and recordings of ambient noise.The results of the H/V ratio show two peaks in about 20 percent of the locations,which are distributed mainly in and around the center and northern part of the Kathmandu Valley.The predominant frequencies vary from 0.5 Hz to 8.9 Hz in the study area,whereas the second resonance fiequency varies from 4 Hz to 6 Hz in the center and northern part of the valley.This indicates that the center and northern part of the valley have a wide range of resonance frequency due to two levels of impedance contrast- one may be from the surface layer and the other may be from the layer undemeath.These two levels of resonance indicate the importance of considering the effects of surface and lower layers during the planning and designing of infrastructures in the Kathmandu Valley.展开更多
This study aimed to investigate the site characterization of the Senirkent Basin(Isparta)by using the microtremor(H/V)and surface wave analysis(ReMi)methods.Senirkent district,which is located on the foothill of the K...This study aimed to investigate the site characterization of the Senirkent Basin(Isparta)by using the microtremor(H/V)and surface wave analysis(ReMi)methods.Senirkent district,which is located on the foothill of the Kap?Mountain,are prone to seismic and landslide hazards.After the last landslip disaster(1995),the city has continued to develop on the alluvial basin.The microtremor data collected at 41 stations were analyzed.The predominant frequency and the amplification of the soil were found to be in the range of 1.8–6.6 Hz and 0.8–6.8,respectively.These are 4.0-6.8 Hz and 1-2.5 around the slope of the Kap?Mountain and 0.8-3.6 Hz and 3.0-6.6 at alluvium deposits of the valley.The ReMi data collected along 41 profiles were analyzed to obtain a Vs30 map.The soil classifications were done by using Vs30 values according to NEHRP soil classification criteria.The results showed that the southern area of the study had better soil conditions with Vs30 between 360-1160 m/s and soil class between C and B.The alluvium deposits on the north are relatively low with Vs30 in the range of 260-360 m/s and soil class D.展开更多
It is widely known that the seismic response characteristics of a soil site depends heavily on several key dynamic properties of the soil stratum,such as predominant frequency and damping ratio.A widely used method fo...It is widely known that the seismic response characteristics of a soil site depends heavily on several key dynamic properties of the soil stratum,such as predominant frequency and damping ratio.A widely used method for estimating the predominant frequency of a soil site by using microtremor records,proposed by Nakamura,is investigated to determine its effectiveness in estimating the damping ratio.The authors conducted some microtremor measurements of soil sites in Hong Kong and found that Nakamura's method might also be used to estimate the damping ratio of a soil site.Damping ratio data from several typical soil sites were obtained from both Nakamura's ratio curves using the half power point method and resonant column tests.Regression analysis indicates that there is a strong correlation between the damping ratios derived from these two different approaches.展开更多
This study conducted microtremor testing along six survey lines that cross three typical earth fissures in the Datong basin to determine the dynamic response characteristics of earth fissure sites with regard to the F...This study conducted microtremor testing along six survey lines that cross three typical earth fissures in the Datong basin to determine the dynamic response characteristics of earth fissure sites with regard to the Fourier amplitude spectrum,response spectrum,and Arias intensity.The results show the following.(1)The predominant frequency of an earth fissure site is mainly affected by the thickness and the shear wave velocity of the soil layer and is minimally effected by the presence of an earth fissure.(2)Earth fissures have a pronounced amplification effect on dynamic response.Fourier amplitude,response acceleration,and Arias intensity are high near an earth fissure and decrease with an increase in distance from the earth fissure,tending toward stability at a distance of 20 m.(3)The area that is seriously affected by this amplification is within 6-8 m of an earth fissure,and the general affected area is farther out than this,to a distance of 25 m.(4)New construction should be avoided in an area affected by the amplification,and existing buildings in general and seriously affected areas need to be reinforced to increase their seismic fortification intensity.展开更多
Earthquake has left much life and property damages. The occurrence of such events necessitates the execution of plans for combating the earthquakes. One of the most important methods for combating earthquakes includes...Earthquake has left much life and property damages. The occurrence of such events necessitates the execution of plans for combating the earthquakes. One of the most important methods for combating earthquakes includes assessing dynamic characteristics of soil and site effect. One of the methods by which one can state dynamic characteristics of the soil of an area is the measurement of microtremors. Microtremors are small-scale vibrations that occur in the ground and have an amplitude range of about 0.1-1 microns. Microtremor measurement is fast, applica- ble, cost-effective. Microtremor measurements were taken at 15 stations in the Babol, north of Iran. Regarding H/V spectral ratio method, peak frequency and amplifica- tion factor were calculated for all microtremor stations. According to the analysis, the peak frequency varies from 0.67 to 8.10 Hz within the study area. Also, the authors investigated the validity of the results by comparing them with SESAME guidelines and geotechnical conditions of study area. The microtremor analysis results are consistent with SESAME guidelines and geotechnical condition of study area. The results show that the microtremor obser- vations are acceptable methods for assessing dynamic characteristics of soil and site effect in the Babol City.展开更多
The faults and fractures are known as two of the most important parameters in earthquake occurrence.During the construction in urban areas, faults and fractures may be covered in depth and thus are not visible at the ...The faults and fractures are known as two of the most important parameters in earthquake occurrence.During the construction in urban areas, faults and fractures may be covered in depth and thus are not visible at the ground surface. In this context, non-invasive geophysical prospecting methods(microtremor and geoelectrical methods) and borehole data were used to detect subsurface geological structures(hidden faults) in a suburb of Shiraz in Iran. The horizontal to vertical spectral ratio(HVSR) method was used to obtain the dynamic parameters(predominant frequency and resonance amplitude) of the soil, to detect hidden faults. The results show that the abrupt changes in the sediment thickness and predominant frequencies at a specific direction(NW-SE) can be related to the displacement of a nearly vertical fault with NW-SE trend. In addition, the electrical resistivity method using continuous resistivity profiling(CRP) and Schlumberger arrays was employed to detect a hidden fault and the results were compared with previous data. The obtained results of both arrays illustrate the presence of a nearly vertical fault with NW-SE trend in the region. Comparison of all results shows that the detected faults by both methods are consistent with each other. Therefore, it can be conclusive that combination of the two methods is a useful and reliable approach to study and detect hidden faults.展开更多
To study the characteristics of long period microtremor and applicability of microtremor survey,we have made microtremor observations using long period seismometers of the China's mainland from coastal cities like...To study the characteristics of long period microtremor and applicability of microtremor survey,we have made microtremor observations using long period seismometers of the China's mainland from coastal cities like Shanghai and Tianjin through Beijing,Xi'an,to the far inland cities of Lanzhou and Tianshui.The observation shows that the level of power spectrum of long period microtremors reduced rapidly from the coast to the inland area.However,the energy of long period microtremors in Beijing,Xi'an,Lanzhou and Tianshui area are only approximately ten-thousandth to thousandth of that in Shanghai.Aiming at the complexity of the underground structure in the far inland,a series of underground structure models with different distributions were assessed using three-dimensional,dynamic finite element method(FEM) analyses.The results were used to evaluate microtremor survey methods and their limitations with regard to aggregate variability and thickness determinations.Multiple-wave reflections between layers with the change of underground structure distribution occurred,which have significant effect on the performance of the different field approaches.Information over a broad spectrum from which velocity-depth profiles were produced via inversion approaches.Neither the thickness nor the shear waveVelocity V of the subsurface layer inversion results appeared over a large evaluation with increasing slope angle.In particular,when the angle of the model reached 45°,it could not be accurately evaluated using one-dimensional inversion methods.Finally,the array microtremor survey(AMS) was carried out in Shanghai City,China.Although AMS techniques do not have the layer sensitivity or accuracy(velocity and layer thickness) of borehole techniques,the obtained shear wave velocity structure is especially useful for earthquake disaster prevention and seismic analysis.展开更多
Characterizing the subsurface structure is an important parameter for the improvement of seismic hazard assessment.Due to the tectonic complexity of the earth,some deep fractures do not reach the earth's surface a...Characterizing the subsurface structure is an important parameter for the improvement of seismic hazard assessment.Due to the tectonic complexity of the earth,some deep fractures do not reach the earth's surface and are not detectable with visual analysis.Therefore,the lack of knowledge of faults and fractures can result in disasters,especially in urban planning.Many geophysical methods can be used to estimate subsurface structure characterization.However,a more reliable method is required to assess seismic hazards and reduce potential damage in metropolitan areas without destroying buildings and structures.This paper aims to identify hidden faults and structures using shear wave velocity sections.To do this,surface wave dispersion curve was extracted from the vertical component of microtremor array recording using the spatial autocorrelation(SPAC)method in two profiles and 13 array stations(perpendicular to the altitudes)to obtain shear wave velocity structure(Vs)in the west of Mashhad,northeast of Iran.The results of shear wave velocity profiles(Vs)indicate sudden changes in the thickness of sediments.This can be related to the displacement of a normal fault in this area causing the bottom rock to fall and an increase in the alluvial thickness in the central part of the plain.The velocity in the floor rock is 2000 meters per second in this area.According to the surface outcrops and water wells data,its material is slate and Phyllite metamorphic rocks that are exposed in the adjacent heights.Besides,the seismic profile results were well consistent with electrical resistance data and well logs indicating that the tool array method is flexible,non-invasive,relatively fast,and effective for urban areas with satisfactory accuracy.展开更多
The site amplifications for three stations, Libin (LIBI), Baisha (BASH) and Yulong (YULG) situated respectivelyin the southern, middle and northern parts of Lijiang Valley, are obtained by analyzing the S-wave soil/be...The site amplifications for three stations, Libin (LIBI), Baisha (BASH) and Yulong (YULG) situated respectivelyin the southern, middle and northern parts of Lijiang Valley, are obtained by analyzing the S-wave soil/bedrockand microtremor horizontal/vertical spectral ratios. The data are digital recordings for the aftershocks of the Lijiang Ms=7.0 earthquake on February 3, 1996. In the frequency range of 1-4 Hi, the S-wave soil/bedrock spectralratio of E-W component for LIBI is the largest and amounts to 4.5. The microtremor soil N-S/vertical (V) spectralratio is approximate to l, E-W/V is about 4.5 and the same with above soil/bedrock spectral ratio. It is shown thatthe vertical and N-S components of microtremor have not been amplified by the soil and the Nakamura's method isapplicable. With this method, the microtremor spectral ratios for BASH and YULG are further evaluated. Theyhave similar characteristics with that of LIBI. In above frequency range, both N-S/V ratios are approximate to 1,while the E-W/V ratio is about 6 for BASH, 4.5 for YULG. Ljiang Valley is characterized by the trans-valleydirectional site response.展开更多
The present study was carried out to evaluate resonant frequency of the ground and to characterize subsurface ground based on shear wave velocity structure. For this, five sites were selected such as Pulchowk, Chhauni...The present study was carried out to evaluate resonant frequency of the ground and to characterize subsurface ground based on shear wave velocity structure. For this, five sites were selected such as Pulchowk, Chhauni, Gaushala, Buddhanagar and Bhainsepati. About 20 data were recorded in each site and then shear wave velocity structure and graph of amplification ratio with their spatial distribution has been established with the help of software i.e. Seisimager/Seismodule Controller. The results of both analysis methods were then compared to the amplitude of the Gorkha Earthquake and borehole data. All these data and study indicates that the Kathmandu Valley sediments are dependent on the frequency of the seismic waves and the wave velocity is greater in the peripheral region than in the central part of the Valley. The result had also shown that the presence of silty-sand, clay and loose gravel soil with low bearing capacity and elastic modulus in most of the sites are responsible for devastation. It was also noted that apart from few limitations, a non-intrusive microtremor analysis can be adopted for earthquake site characterization in the Kathmandu Valley which can be readily applied and expanded upon in future seismic hazard and microzonation efforts for Kathmandu.展开更多
Deep shear-wave velocity profiles at eight places in Lima Peru were estimated based on the inversion of dispersion curves. The dispersion curves were calculated from small and large microtremor arrays using two method...Deep shear-wave velocity profiles at eight places in Lima Peru were estimated based on the inversion of dispersion curves. The dispersion curves were calculated from small and large microtremor arrays using two methods: the F-k proposed by Capon (1969) and the CCA proposed by Cho et al. (2004). For the purpose of large array measurement we introduced a new type of sensor. Important results are the relative shallow depths to the basement rock in the area classified as alluvial gravel that covers most of the area of Lima city; and the relative large depth to the bedrock in places identified as VSV and CMA. It is recommended that this study be complemented with PS loggings in order to verify the estimated profiles.展开更多
基金Supported by National Natural Science Foundation of China(No.50378032and No.50538030)Associated Foundation of Earthquake Science(No.201009)Foundation of Heilongjiang Institute of Science and Technology(No.04-15).
文摘Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched.The phase velocities of Rayleigh wave are estimated from vertical component records and those of Love wave are estimated from three-component records of microtremors array using modified spatial auto-correlation method.Haskell matrix method is used in calculating Rayleigh and Love wave phase velocities,and the shallow S-wave velocity structure of two practical sites are estimated by means of a hybrid approach of Genetic Algorithm and Simplex.The results are compared with the PS logging data of the two sites,showing it is feasible to estimate the shallow S-wave velocity structure of practical site from the observation of microtremor array.
文摘The Refraction Microtremor (ReMi) method is being used around the world by the geotechnical and geophysical community to determine shear-wave velocities. This is due to its faster, less expensive and accurate determination of shear wave velocities, when compared to other methods used. Unlike standard crosshole and downhole techniques, ReMi does not require any drilling. It eliminates the problem of shear-wave source and quiet site that are pre-requisites for good seismic refraction surveys. In this paper we present refraction microtremors (ReMi) measurements done at sites underlain by different soil types in Egypt. The ReMi data were collected using standard refraction equipment employing 12, 24 or 48 channels. We used deep oceanographic noise and ambient noise including energy from power generators, pile drivers and traffic. The data were processed using the SeisOpt? ReMi? (? Optim, Inc.) software to reveal one-dimensional shear-wave velocity structures beneath the arrays. To access the validity of the method for the Egyptian soils, the shear-wave profiles obtained from the ReMi measurements were compared to downhole and crosshole data for different soils. Comparisons demonstrate the robustness of the ReMi technique for obtaining shear-wave velocities for different soil types in Egypt.
文摘The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the surface geology. The Fourier transform was applied to the most stationary parts of the triaxial wave motion recordings for each individual site and applied the traditional Nakamura technique, namely, the horizontal to vertical spectral ratio (H/V) to retrieve the predominant shear wave period of vibration of the soil profiles above the bedrock. The results yield predominant long periods of about 3.0-4.0 s in the port area and the waterfront, 1.0-2.0 s in the central part of Kingston, 0.3-1.0 s in Portmore and very stiff soil conditions in the surrounding area of the city. The results coincide fairly well with previous geological studies in the region, geotechnical data in boreholes, gravimetric measurements and strong motion recordings, suggesting a high degree of amplification of ground motion in the whole period range of engineering interest. Additionally, the authors obtained the liquefaction vulnerability factor Kg proposed by Nakamura based on the H/V ratio of microtremors. The results suggest that the port area, the waterfront and the Port Royal are highly susceptible to liquefaction. Finally, the authors obtained fundamental periods of vibration based on microtremor measurements on the roof and the basement of four important buildings in the KMA and indicated future lines of research employing ambient noise measurements on structures.
文摘The single-station microtremor method is one of the fastest,most reliable,and cheapest methods used to identify dynamic soil properties.This study utilizes 49 single-station microtremor measurements to identify the dynamic soil properties of the Hilalkent quarter of the Yakutiye district in Erzurum.Soil dominant frequency and the amplification factor were calculated by using the Nakamura horizontal/vertical spectral ratio(H/V)method.While the soil dominant frequency values varied between 0.4 Hz and 10 Hz,the soil amplification factor changed between 1 and 10.Higher H/V values were acquired with lower frequency values.The vulnerability index(K_(g))and shear strain parameters that are utilized to estimate the damage that may be caused by an earthquake were mapped.Especially in the west side of the study area,higher K_(g) values were observed.The shear strain map was created with 0.25 g,0.50 g and 0.75 g bedrock accelerations,and soil types that lost elasticity during an earthquake were identified.The average shear wave velocity for the first 30 m(V_(s30))was calculated.Finally,it was observed that the western part of the study area,which resulted in a higher period and higher H/V,higher K_(g) and lower V_(s30) values,presents a higher risk of damage during an earthquake.
基金supported by the National Natural Science Foundation of China(42372339)the China Geological Survey Project(DD20221816,DD20190319)。
文摘It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the landslides and indicate the potential for future reactivation.This study examines the Deda ancient landslide,situated in the Chalong-ranbu fault zone,where creep deformation suggests a complex underground structure.By integrating remote sensing,field surveys,Audio-frequency Magnetotellurics(AMT),and Microtremor Survey Method(MSM)techniques,along with engineering geological drilling for validation,to uncover the landslide’s spatial feature s.The research indicates that a fault is developed in the upper part of the Deda ancient landslide,and the gully divides it into Deda landslide accumulation zoneⅠand Deda landslide accumulation zoneⅡin space.The distinctive geological characteristics detectable by MSM in the shallow subsurface and by AMT in deeper layers.The findings include the identification of two sliding zones in the Deda I landslide,the shallow sliding zone(DD-I-S1)depth is approximately 20 m,and the deep sliding zone(DD-I-S2)depth is 36.2-49.9 m.The sliding zone(DD-Ⅱ-S1)depth of the DedaⅡlandslide is 37.6-43.1 m.A novel MSM-based method for sliding zone identification is proposed,achieving less than 5%discrepancy in depth determination when compared with drilling data.These results provide a valuable reference for the spatial structural analysis of large-deepseated landslides in geologically complex regions like the eastern Tibetan Plateau.
基金jointly supported by the project of Chinese National Natural Science Foundation(42107485)National Key R&D Program(2020YFC1512400,2018YFC800804)China Geological Survey(DD20190282,DD20221734,and DD20230323)。
文摘The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.
基金Supported by projects of National Natural Science Foundation of China(No.42074150)National Key Research and Development Program of China(No.2023YFC3707901)Futian District Integrated Ground Collapse Monitoring and Early Warning System Construction Project(No.FTCG2023000209).
文摘The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.
基金National Natural Science Foundation of China under Grant No.41772275the Fundamental Research Funds for the Central Universities under Grant No.CHD300102268203。
文摘In this study,the Beibu earth fissure site in the northeastern part of Weihe Basin,which contains four nearly parallel earth fissures,was studied.A long straight microtremor measuring line,containing 49 measuring points across four earth fissures,was established to investigate the dynamic response of this site using Fourier spectrum,response acceleration spectrum,Arias intensity,and HVSR analyses.The main results are as follows:(1)The fundamental frequencies of 44 measuring points obtained from HVSR analysis are concentrated within 1.67 Hz-2.25 Hz,and the existence of the earth fissures has little effect on the fundamental frequency changes.(2)There is an amplification effect near a single earth fissure.The dynamic responses are large at the measuring points near the earth fissure,and the values decrease with increasing distance from the earth fissure.In areas between two adjacent earth fissures,these values decrease and are even lower than those in sites without amplification effects.(3)In this earth fissure site,the general area(or less affected area)and affected areas were delineated based on the amplification effect.In engineering applications,construction design should avoid these affected areas and existing structures should be reinforced to satisfy the seismic fortification requirements.
文摘On January 23rd 2005, a strong earthquake with moment magnitude (Mw 6.3) hit the Palu City (Central Sulawesi area). The earthquake involved an area more than 800 km along the Palu Koro fault zone. In order to characterize the seismic ground motion of alluvium layers existing in the Palu City, eight sites of mierotremor array measurements were performed. The shear wave velocity of the top layer is ≤ 300 m/s. Palu City had deposited on a thick alluvial layer in the coastal area. The subsurface geology also changes slowly from soft sedimentary layers in the coastal area to igneous intrusion and metamorphic rock in the mountains. Seismic strong ground motion was predicted based on the statistical Green's function method. Considering the damage produced by the 2005 Palu earthquake (Mw 6.3), we also estimated peak ground acceleration distribution at Palu City, with values ranging from 100 gal up to 500 gal on the PGA (peak ground acceleration) scale. Peak ground velocity becomes more than 0.3 m/s in some areas, which may likely lead to severe damage to buildings.
文摘Past researchers have anticipated the occurrence of a great earthquake in the central Himalayas in the near future.This may cause serious damage in the Kathmandu Valley,which sits on an ancient lake bed zone,with lacustrine sediments of more than 500 m depth.In this study,the predominant frequency of ground motion is evaluated using the Horizontal-to-Vertical (H/V) spectral ratio technique and recordings of ambient noise.The results of the H/V ratio show two peaks in about 20 percent of the locations,which are distributed mainly in and around the center and northern part of the Kathmandu Valley.The predominant frequencies vary from 0.5 Hz to 8.9 Hz in the study area,whereas the second resonance fiequency varies from 4 Hz to 6 Hz in the center and northern part of the valley.This indicates that the center and northern part of the valley have a wide range of resonance frequency due to two levels of impedance contrast- one may be from the surface layer and the other may be from the layer undemeath.These two levels of resonance indicate the importance of considering the effects of surface and lower layers during the planning and designing of infrastructures in the Kathmandu Valley.
文摘This study aimed to investigate the site characterization of the Senirkent Basin(Isparta)by using the microtremor(H/V)and surface wave analysis(ReMi)methods.Senirkent district,which is located on the foothill of the Kap?Mountain,are prone to seismic and landslide hazards.After the last landslip disaster(1995),the city has continued to develop on the alluvial basin.The microtremor data collected at 41 stations were analyzed.The predominant frequency and the amplification of the soil were found to be in the range of 1.8–6.6 Hz and 0.8–6.8,respectively.These are 4.0-6.8 Hz and 1-2.5 around the slope of the Kap?Mountain and 0.8-3.6 Hz and 3.0-6.6 at alluvium deposits of the valley.The ReMi data collected along 41 profiles were analyzed to obtain a Vs30 map.The soil classifications were done by using Vs30 values according to NEHRP soil classification criteria.The results showed that the southern area of the study had better soil conditions with Vs30 between 360-1160 m/s and soil class between C and B.The alluvium deposits on the north are relatively low with Vs30 in the range of 260-360 m/s and soil class D.
基金Research project (PolyU 5076/97E),of the Department of Civil and Structural Engineering,The Hong Kong Polytechnic University
文摘It is widely known that the seismic response characteristics of a soil site depends heavily on several key dynamic properties of the soil stratum,such as predominant frequency and damping ratio.A widely used method for estimating the predominant frequency of a soil site by using microtremor records,proposed by Nakamura,is investigated to determine its effectiveness in estimating the damping ratio.The authors conducted some microtremor measurements of soil sites in Hong Kong and found that Nakamura's method might also be used to estimate the damping ratio of a soil site.Damping ratio data from several typical soil sites were obtained from both Nakamura's ratio curves using the half power point method and resonant column tests.Regression analysis indicates that there is a strong correlation between the damping ratios derived from these two different approaches.
基金National Natural Science Foundation of China under Grant No.41772275the Fundamental Research Funds for the Central Universities under Grant No.300102268203。
文摘This study conducted microtremor testing along six survey lines that cross three typical earth fissures in the Datong basin to determine the dynamic response characteristics of earth fissure sites with regard to the Fourier amplitude spectrum,response spectrum,and Arias intensity.The results show the following.(1)The predominant frequency of an earth fissure site is mainly affected by the thickness and the shear wave velocity of the soil layer and is minimally effected by the presence of an earth fissure.(2)Earth fissures have a pronounced amplification effect on dynamic response.Fourier amplitude,response acceleration,and Arias intensity are high near an earth fissure and decrease with an increase in distance from the earth fissure,tending toward stability at a distance of 20 m.(3)The area that is seriously affected by this amplification is within 6-8 m of an earth fissure,and the general affected area is farther out than this,to a distance of 25 m.(4)New construction should be avoided in an area affected by the amplification,and existing buildings in general and seriously affected areas need to be reinforced to increase their seismic fortification intensity.
文摘Earthquake has left much life and property damages. The occurrence of such events necessitates the execution of plans for combating the earthquakes. One of the most important methods for combating earthquakes includes assessing dynamic characteristics of soil and site effect. One of the methods by which one can state dynamic characteristics of the soil of an area is the measurement of microtremors. Microtremors are small-scale vibrations that occur in the ground and have an amplitude range of about 0.1-1 microns. Microtremor measurement is fast, applica- ble, cost-effective. Microtremor measurements were taken at 15 stations in the Babol, north of Iran. Regarding H/V spectral ratio method, peak frequency and amplifica- tion factor were calculated for all microtremor stations. According to the analysis, the peak frequency varies from 0.67 to 8.10 Hz within the study area. Also, the authors investigated the validity of the results by comparing them with SESAME guidelines and geotechnical conditions of study area. The microtremor analysis results are consistent with SESAME guidelines and geotechnical condition of study area. The results show that the microtremor obser- vations are acceptable methods for assessing dynamic characteristics of soil and site effect in the Babol City.
基金supported by the Center of Excellence for Environmental Geohazards and the Research Council of Shiraz University
文摘The faults and fractures are known as two of the most important parameters in earthquake occurrence.During the construction in urban areas, faults and fractures may be covered in depth and thus are not visible at the ground surface. In this context, non-invasive geophysical prospecting methods(microtremor and geoelectrical methods) and borehole data were used to detect subsurface geological structures(hidden faults) in a suburb of Shiraz in Iran. The horizontal to vertical spectral ratio(HVSR) method was used to obtain the dynamic parameters(predominant frequency and resonance amplitude) of the soil, to detect hidden faults. The results show that the abrupt changes in the sediment thickness and predominant frequencies at a specific direction(NW-SE) can be related to the displacement of a nearly vertical fault with NW-SE trend. In addition, the electrical resistivity method using continuous resistivity profiling(CRP) and Schlumberger arrays was employed to detect a hidden fault and the results were compared with previous data. The obtained results of both arrays illustrate the presence of a nearly vertical fault with NW-SE trend in the region. Comparison of all results shows that the detected faults by both methods are consistent with each other. Therefore, it can be conclusive that combination of the two methods is a useful and reliable approach to study and detect hidden faults.
基金financially supported by the National Natural Science Foundation of China(Grant No.11372180)
文摘To study the characteristics of long period microtremor and applicability of microtremor survey,we have made microtremor observations using long period seismometers of the China's mainland from coastal cities like Shanghai and Tianjin through Beijing,Xi'an,to the far inland cities of Lanzhou and Tianshui.The observation shows that the level of power spectrum of long period microtremors reduced rapidly from the coast to the inland area.However,the energy of long period microtremors in Beijing,Xi'an,Lanzhou and Tianshui area are only approximately ten-thousandth to thousandth of that in Shanghai.Aiming at the complexity of the underground structure in the far inland,a series of underground structure models with different distributions were assessed using three-dimensional,dynamic finite element method(FEM) analyses.The results were used to evaluate microtremor survey methods and their limitations with regard to aggregate variability and thickness determinations.Multiple-wave reflections between layers with the change of underground structure distribution occurred,which have significant effect on the performance of the different field approaches.Information over a broad spectrum from which velocity-depth profiles were produced via inversion approaches.Neither the thickness nor the shear waveVelocity V of the subsurface layer inversion results appeared over a large evaluation with increasing slope angle.In particular,when the angle of the model reached 45°,it could not be accurately evaluated using one-dimensional inversion methods.Finally,the array microtremor survey(AMS) was carried out in Shanghai City,China.Although AMS techniques do not have the layer sensitivity or accuracy(velocity and layer thickness) of borehole techniques,the obtained shear wave velocity structure is especially useful for earthquake disaster prevention and seismic analysis.
文摘Characterizing the subsurface structure is an important parameter for the improvement of seismic hazard assessment.Due to the tectonic complexity of the earth,some deep fractures do not reach the earth's surface and are not detectable with visual analysis.Therefore,the lack of knowledge of faults and fractures can result in disasters,especially in urban planning.Many geophysical methods can be used to estimate subsurface structure characterization.However,a more reliable method is required to assess seismic hazards and reduce potential damage in metropolitan areas without destroying buildings and structures.This paper aims to identify hidden faults and structures using shear wave velocity sections.To do this,surface wave dispersion curve was extracted from the vertical component of microtremor array recording using the spatial autocorrelation(SPAC)method in two profiles and 13 array stations(perpendicular to the altitudes)to obtain shear wave velocity structure(Vs)in the west of Mashhad,northeast of Iran.The results of shear wave velocity profiles(Vs)indicate sudden changes in the thickness of sediments.This can be related to the displacement of a normal fault in this area causing the bottom rock to fall and an increase in the alluvial thickness in the central part of the plain.The velocity in the floor rock is 2000 meters per second in this area.According to the surface outcrops and water wells data,its material is slate and Phyllite metamorphic rocks that are exposed in the adjacent heights.Besides,the seismic profile results were well consistent with electrical resistance data and well logs indicating that the tool array method is flexible,non-invasive,relatively fast,and effective for urban areas with satisfactory accuracy.
文摘The site amplifications for three stations, Libin (LIBI), Baisha (BASH) and Yulong (YULG) situated respectivelyin the southern, middle and northern parts of Lijiang Valley, are obtained by analyzing the S-wave soil/bedrockand microtremor horizontal/vertical spectral ratios. The data are digital recordings for the aftershocks of the Lijiang Ms=7.0 earthquake on February 3, 1996. In the frequency range of 1-4 Hi, the S-wave soil/bedrock spectralratio of E-W component for LIBI is the largest and amounts to 4.5. The microtremor soil N-S/vertical (V) spectralratio is approximate to l, E-W/V is about 4.5 and the same with above soil/bedrock spectral ratio. It is shown thatthe vertical and N-S components of microtremor have not been amplified by the soil and the Nakamura's method isapplicable. With this method, the microtremor spectral ratios for BASH and YULG are further evaluated. Theyhave similar characteristics with that of LIBI. In above frequency range, both N-S/V ratios are approximate to 1,while the E-W/V ratio is about 6 for BASH, 4.5 for YULG. Ljiang Valley is characterized by the trans-valleydirectional site response.
文摘The present study was carried out to evaluate resonant frequency of the ground and to characterize subsurface ground based on shear wave velocity structure. For this, five sites were selected such as Pulchowk, Chhauni, Gaushala, Buddhanagar and Bhainsepati. About 20 data were recorded in each site and then shear wave velocity structure and graph of amplification ratio with their spatial distribution has been established with the help of software i.e. Seisimager/Seismodule Controller. The results of both analysis methods were then compared to the amplitude of the Gorkha Earthquake and borehole data. All these data and study indicates that the Kathmandu Valley sediments are dependent on the frequency of the seismic waves and the wave velocity is greater in the peripheral region than in the central part of the Valley. The result had also shown that the presence of silty-sand, clay and loose gravel soil with low bearing capacity and elastic modulus in most of the sites are responsible for devastation. It was also noted that apart from few limitations, a non-intrusive microtremor analysis can be adopted for earthquake site characterization in the Kathmandu Valley which can be readily applied and expanded upon in future seismic hazard and microzonation efforts for Kathmandu.
文摘Deep shear-wave velocity profiles at eight places in Lima Peru were estimated based on the inversion of dispersion curves. The dispersion curves were calculated from small and large microtremor arrays using two methods: the F-k proposed by Capon (1969) and the CCA proposed by Cho et al. (2004). For the purpose of large array measurement we introduced a new type of sensor. Important results are the relative shallow depths to the basement rock in the area classified as alluvial gravel that covers most of the area of Lima city; and the relative large depth to the bedrock in places identified as VSV and CMA. It is recommended that this study be complemented with PS loggings in order to verify the estimated profiles.