Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hy...Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.展开更多
The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of...The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of the frequency and radio frequency(RF) voltage of FOM and ILM,as well as the locking bandwidth,on the anode voltage and magnetic field are derived.With the increase of the anode voltage and the decrease of the magnetic field,the power and its growth rate increase,while the frequency increases and its growth rate decreases.The theoretical frequency and power of FOM agree with the particle-in-cell(PIC) simulation results.Besides,the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results,which verifies the accuracy of the theory.The theory provides a novel calculation method of frequency characteristics.It can approximately analyze the power and frequency of both FOM and ILM,which promotes the industrial applications of magnetron and microwave energy.展开更多
基金supported by Shenzhen Key Laboratory of Sensors Technology Open Fund of China (Nos.SST200908, SST200911)
文摘Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328901)the National Natural Science Foundation of China(Grant No.11305177)
文摘The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of the frequency and radio frequency(RF) voltage of FOM and ILM,as well as the locking bandwidth,on the anode voltage and magnetic field are derived.With the increase of the anode voltage and the decrease of the magnetic field,the power and its growth rate increase,while the frequency increases and its growth rate decreases.The theoretical frequency and power of FOM agree with the particle-in-cell(PIC) simulation results.Besides,the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results,which verifies the accuracy of the theory.The theory provides a novel calculation method of frequency characteristics.It can approximately analyze the power and frequency of both FOM and ILM,which promotes the industrial applications of magnetron and microwave energy.