Theamorphous magnetoelastic Fe66Co17Si1B6 thin films have been deposited by dc magnetron sputtering. A lot of "nano-trenches" have been observed on the fdm surfaces by AFM. The permeability of amorphous Fe66COlTSilB...Theamorphous magnetoelastic Fe66Co17Si1B6 thin films have been deposited by dc magnetron sputtering. A lot of "nano-trenches" have been observed on the fdm surfaces by AFM. The permeability of amorphous Fe66COlTSilB6 thin films was measured within the frequency range of 0.6GHz-10.2 GHz. The ferromagnetic resonance frequency was found to be 1.2 GHz. MFM shows that the domain of thin film is a maze-type pattern, which indicates that an out-of-plane magnetic anisotropy exists. The out-of-plane anisotropy is believed due to the stress-induced magnetic anisotropy. It can be inferred that the internal stress is tensile stress and normal to the film plane. Index Terms展开更多
In order to achieve an easy fabrication and considerable directional orientation, we use a sedimentation method to prepare composites consisting of Fe Si Al flakes. The flakes are dispersed in hydroxylated acrylic res...In order to achieve an easy fabrication and considerable directional orientation, we use a sedimentation method to prepare composites consisting of Fe Si Al flakes. The flakes are dispersed in hydroxylated acrylic resin solution in sonication and natural form into laminated composite samples. Then, the toroidal rings are made with the prepared laminated composite samples. Compared with random orientational Fe Si Al flakes in the composite, the complex permeability of laminated sample has been obviously improved when microwave frequency is below 4 GHz, especially for the imaginary part. A model is proposed to explain the formation reason of aligned Fe Si Al composite by this method. Damping factor(α) is calculated by the combination of the effective medium theory and Landau-Lifshitz-Gilbert equation, and the permeability of the samples is verified by these theories.展开更多
Microwave permeability spectra of single Co nanotube under equilibrium state have been studied by micromagnetics simulation.More than four obvious resonance peaks have been found(11.72,24.20,33.18 and 39.55 GHz).Such ...Microwave permeability spectra of single Co nanotube under equilibrium state have been studied by micromagnetics simulation.More than four obvious resonance peaks have been found(11.72,24.20,33.18 and 39.55 GHz).Such large resonance frequency cannot be found in other traditional magnetic materials.The configurations of magnetic moments along the nanotube have been simulated.The results show that the top end of nanotube has a"flow-out"pattern of magnetic moments configuration.The bottom end has a"flow-in"pattern of magnetic moments configuration.The magnetic moments within the main body of nanotube are aligned perfectly along the length of nanotube.The magnitude of natural resonance peak is strongly related to the volume fraction of a zone,which has the same orientation of magnetic moments.Large microwave permeability values have been found for single nanotube.The generalized Snoek’s law has been used to validate the micromagnetics simulations in this paper.展开更多
The microwave permeability of laminated composites based on thin FeCoBSi films was under study.The level of permeability increased with increasing of the ferromagnetic inclusions in the laminates.The intrinsic permeab...The microwave permeability of laminated composites based on thin FeCoBSi films was under study.The level of permeability increased with increasing of the ferromagnetic inclusions in the laminates.The intrinsic permeability spectra of ferromagnetic inclusion are parametrically reconstructed.The obtained parameters of magnetic resonance were specially analyzed.To avoid the effect of eddy current and to obtain large-volume fractions of ferromagnetic constituent,laminates consisting of alternating FeCoBSi/SiO2 multi-layers and mylar substrates were also investigated.For the same volume fractions of ferromagnetic constituent (8.7%),laminates based on multi-layered films are found to possess higher values of permeability than those based on one-layered films.展开更多
文摘Theamorphous magnetoelastic Fe66Co17Si1B6 thin films have been deposited by dc magnetron sputtering. A lot of "nano-trenches" have been observed on the fdm surfaces by AFM. The permeability of amorphous Fe66COlTSilB6 thin films was measured within the frequency range of 0.6GHz-10.2 GHz. The ferromagnetic resonance frequency was found to be 1.2 GHz. MFM shows that the domain of thin film is a maze-type pattern, which indicates that an out-of-plane magnetic anisotropy exists. The out-of-plane anisotropy is believed due to the stress-induced magnetic anisotropy. It can be inferred that the internal stress is tensile stress and normal to the film plane. Index Terms
基金Supported by the National Natural Science Foundation of China(51025208,61001026)the Program for Changjiang Scholars and Innovative Research Team in University and New Century Excellent Talents in Universities
文摘In order to achieve an easy fabrication and considerable directional orientation, we use a sedimentation method to prepare composites consisting of Fe Si Al flakes. The flakes are dispersed in hydroxylated acrylic resin solution in sonication and natural form into laminated composite samples. Then, the toroidal rings are made with the prepared laminated composite samples. Compared with random orientational Fe Si Al flakes in the composite, the complex permeability of laminated sample has been obviously improved when microwave frequency is below 4 GHz, especially for the imaginary part. A model is proposed to explain the formation reason of aligned Fe Si Al composite by this method. Damping factor(α) is calculated by the combination of the effective medium theory and Landau-Lifshitz-Gilbert equation, and the permeability of the samples is verified by these theories.
基金supported by the National Natural Science Foundation of China(Grant No.61271039)the Scientific Foundation of Young Scientists of Sichuan Province(Grant No.2012JQ0053)the Program for New Century Excellent Talents in Universities(NCET-11-0060)
文摘Microwave permeability spectra of single Co nanotube under equilibrium state have been studied by micromagnetics simulation.More than four obvious resonance peaks have been found(11.72,24.20,33.18 and 39.55 GHz).Such large resonance frequency cannot be found in other traditional magnetic materials.The configurations of magnetic moments along the nanotube have been simulated.The results show that the top end of nanotube has a"flow-out"pattern of magnetic moments configuration.The bottom end has a"flow-in"pattern of magnetic moments configuration.The magnetic moments within the main body of nanotube are aligned perfectly along the length of nanotube.The magnitude of natural resonance peak is strongly related to the volume fraction of a zone,which has the same orientation of magnetic moments.Large microwave permeability values have been found for single nanotube.The generalized Snoek’s law has been used to validate the micromagnetics simulations in this paper.
基金Funded by the National Natural Science Foundation of China(Nos.60701016,60911130130)the Fundamental Research Funds for the Central Universities (No.ZYGX2009J032)
文摘The microwave permeability of laminated composites based on thin FeCoBSi films was under study.The level of permeability increased with increasing of the ferromagnetic inclusions in the laminates.The intrinsic permeability spectra of ferromagnetic inclusion are parametrically reconstructed.The obtained parameters of magnetic resonance were specially analyzed.To avoid the effect of eddy current and to obtain large-volume fractions of ferromagnetic constituent,laminates consisting of alternating FeCoBSi/SiO2 multi-layers and mylar substrates were also investigated.For the same volume fractions of ferromagnetic constituent (8.7%),laminates based on multi-layered films are found to possess higher values of permeability than those based on one-layered films.