Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma par...Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma parameters and deposition rates was investigated, and the influ-ence of radio frequency substrate bias on properties of SiO2 films was also preliminarily studied.X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron mi-croscopy, atomic force microscopy and elllipsometry were used to characterize the deposited films,showing that SiO2 films with good structural and optical properties prepared at low temperaturehave been achieved. They can basically meet the requirements of integrated optical waveguides.展开更多
Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and t...Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature (T N) of 403K working at 4.2K and 0.65THz. As a result, the noise equivalent power of 1.5pW/Hz 1/2 and the response time of 64ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2K and 0.65THz.展开更多
The method of numerical simulation is used to fit the relationship between the photoconductivity in films and the illumination time. The generation and process rule of kinds of different charged defect states during i...The method of numerical simulation is used to fit the relationship between the photoconductivity in films and the illumination time. The generation and process rule of kinds of different charged defect states during illumination are revealed. It is found surprisingly that the initial photoconductivity determines directly the total account of photoconductivity degradation of sample.展开更多
A series of a-Si:H films are deposited by hot wire assisted microwave electron cyclotron resonant chemical vapour deposition (HW-MWECR-CVD), subsequently exposed under simulated illumination for three hours. This p...A series of a-Si:H films are deposited by hot wire assisted microwave electron cyclotron resonant chemical vapour deposition (HW-MWECR-CVD), subsequently exposed under simulated illumination for three hours. This paper studies the microstructure change during illumination by Fourier Transformation Infrared (FTIR) spectra. There are two typical transformation tendencies of microstructure after illumination. It proposes a model of light induced structural change based on the experimental results. It is found that all samples follow the same mechanism during illumination, and intrinsic structure of samples affect the total H content.展开更多
文摘Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma parameters and deposition rates was investigated, and the influ-ence of radio frequency substrate bias on properties of SiO2 films was also preliminarily studied.X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron mi-croscopy, atomic force microscopy and elllipsometry were used to characterize the deposited films,showing that SiO2 films with good structural and optical properties prepared at low temperaturehave been achieved. They can basically meet the requirements of integrated optical waveguides.
基金Supported by the National Basic Research Program of China under Grant No 2014CB339800the National Natural Science Foundation of China under Grant Nos 61521001,11173015 and 11227904+1 种基金the Fundamental Research Funds for the Central Universitiesthe Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves of Jiangsu Province
文摘Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature (T N) of 403K working at 4.2K and 0.65THz. As a result, the noise equivalent power of 1.5pW/Hz 1/2 and the response time of 64ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2K and 0.65THz.
文摘The method of numerical simulation is used to fit the relationship between the photoconductivity in films and the illumination time. The generation and process rule of kinds of different charged defect states during illumination are revealed. It is found surprisingly that the initial photoconductivity determines directly the total account of photoconductivity degradation of sample.
文摘A series of a-Si:H films are deposited by hot wire assisted microwave electron cyclotron resonant chemical vapour deposition (HW-MWECR-CVD), subsequently exposed under simulated illumination for three hours. This paper studies the microstructure change during illumination by Fourier Transformation Infrared (FTIR) spectra. There are two typical transformation tendencies of microstructure after illumination. It proposes a model of light induced structural change based on the experimental results. It is found that all samples follow the same mechanism during illumination, and intrinsic structure of samples affect the total H content.