期刊文献+
共找到222篇文章
< 1 2 12 >
每页显示 20 50 100
Edge effect during microwave plasma chemical vapor deposition diamond-film:Multiphysics simulation and experimental verification
1
作者 Zhiliang Yang Kang An +7 位作者 Yuchen Liu Zhijian Guo Siwu Shao Jinlong Liu Junjun Wei Liangxian Chen Lishu Wu Chengming Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2287-2299,共13页
This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used t... This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress. 展开更多
关键词 microwave plasma chemical vapor deposition edge discharge plasma diamond film
下载PDF
Microwave Plasma Chemical Vapor Deposition of Diamond Films on Silicon From Ethanol and Hydrogen 被引量:3
2
作者 马志斌 满卫东 +1 位作者 汪建华 王传新 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第2期1735-1741,共7页
Diamond films with very smooth surface and good optical quality have been deposited onto silicon substrate using microwave plasma chemical vapor deposition (MPCVD) from a gas mixture of ethanol and hydrogen at a low s... Diamond films with very smooth surface and good optical quality have been deposited onto silicon substrate using microwave plasma chemical vapor deposition (MPCVD) from a gas mixture of ethanol and hydrogen at a low substrate temperature of 450 ℃. The effects of the substrate temperature on the diamond nucleation and the morphology of the diamond film have been investigated and observed with scanning electron microscopy (SEM). The microstructure and the phase of the film have been characterized using Raman spectroscopy and X-ray diffraction (XRD). The diamond nucleation density significantly decreases with the increasing of the substrate temperature. There are only sparse nuclei when the substrate temperature is higher than 800 ℃ although the ethanol concentration in hydrogen is very high. That the characteristic diamond peak in the Raman spectrum of a diamond film prepared at a low substrate temperature of 450 ℃ extends into broadband indicates that the film is of nanophase. No graphite peak appeared in the XRD pattern confirms that the film is mainly composed of SP3 carbon. The diamond peak in the XRD pattern also broadens due to the nanocrystalline of the film. 展开更多
关键词 diamond film microwave plasma chemical vapor deposition ETHANOL
下载PDF
Growth of Aligned Carbon Nanotubes through Microwave Plasma Chemical Vapor Deposition
3
作者 王升高 汪建华 +2 位作者 马志斌 王传新 满卫东 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第1期2681-2683,共3页
Aligned carbon nanotubes (CNTs) were synthesized on glass by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at the low temperature of 550 ℃. The experimental results ... Aligned carbon nanotubes (CNTs) were synthesized on glass by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at the low temperature of 550 ℃. The experimental results show that both the self-bias potential and the density of the catalyst particles are responsible for the alignment of CNTs. When the catalyst particle density is high enough, strong interactions among the CNTs can inhibit CNTs from growing randomly and result in parallel alignment. 展开更多
关键词 carbon nanotubes microwave plasma chemical vapor deposition
下载PDF
Preparation of Nano-Crystalline Diamond Films on Poly-Crystalline Diamond Thick Films by Microwave Plasma Enhanced Chemical Vapor Deposition
4
作者 熊礼威 汪建华 +2 位作者 满卫东 翁俊 刘长林 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第3期310-313,共4页
Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in... Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size. 展开更多
关键词 diamond thick film nano-crystalline diamond film microwave plasma en hanced chemical vapor deposition
下载PDF
Nanocrystalline Diamond Films Grown by Microwave Plasma Chemical Vapor Deposition and Its Biocompatible Property 被引量:1
5
作者 Jihan Yang Yongping Zhang 《Advances in Materials Physics and Chemistry》 2018年第4期157-176,共20页
Due to its unique properties such as high hardness, light transmittance, thermal conductance, chemical stability and corrosion resistance, diamond has drawn tremendous attention in last two decades. These specific pro... Due to its unique properties such as high hardness, light transmittance, thermal conductance, chemical stability and corrosion resistance, diamond has drawn tremendous attention in last two decades. These specific properties made diamond film a promising material for cutting tools, microwave windows, heat sinks for electronic devices and diamond electrodes. However, the diamond film with grain sizes at microscale usually exhibits high surface roughness and hinders its applications in the microelectro mechanical system (MEMS) and biological field because it is difficult to be polished by mechanical and chemical methods. With the development of the chemical vapor deposition, the nanocrystalline diamond (NCD) film has been fabricated and found new applications. The grain size of NCD film is in the range of 10 to 100 nm, which inherits the properties of the diamond and possesses the unique properties of the nanoscale materials, and the morphology of the NCD film is granular or needle-like structure. The microwave plasma chemical vapor deposition (MPCVD) has been regarded as the most promising method to deposit NCD film at low temperature. Compared to the hot filament CVD, MPCVD can grow high quality NCD film avoiding of the contamination from the filament materials. The MPCVD technique has high plasma density to activate carbonaceous compound and grow NCD film in high growth rate and low substrate temperature. The unique properties of NCD film, such as the superior electrical, mechanical and biological properties facilitate their application in various fields. The biological application, especially as a biocompatible coating, mainly includes the joint replacement implants and protective coatings and the ophthalmological prosthesis. 展开更多
关键词 NANOCRYSTALLINE DIAMOND Films microwave plasma chemical vapor deposition BIOCOMPATIBLE PROPERTY
下载PDF
Electron field emission characteristics of nano-catkin carbon films deposited by electron cyclotron resonance microwave plasma chemical vapour deposition 被引量:2
6
作者 顾广瑞 吴宝嘉 +1 位作者 金哲 Ito Toshimichi 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第2期716-720,共5页
This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface ... This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm^2 and a current density of 3.2mA/cm^2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory. 展开更多
关键词 field emission carbon films nano-catkin microwave plasma chemical vapour deposition
下载PDF
Field emission characteristics of nano-sheet carbon films deposited by quartz-tube microwave plasma chemical vapour deposition 被引量:1
7
作者 顾广瑞 金哲 Ito Toshimichi 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第4期1467-1471,共5页
Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is invest... Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is investigated by using field emission scanning electron microscope (FESEM) and Raman spectroscopy. These nano^carbon films are possessed of good field emission (FE) characteristics with a low threshold field of 2.6 V/μm and a high current density of 12.6 mA/cm^2 at an electric field of 9 V/μm. As the FE currents tend to be saturated in a high E region, no simple Fowler-Nordheim (F-N) model is applicable. A modified F N model considering statistic effects of FE tip structures and a space-charge-limited-current (SCLC) effect is applied successfully to explaining the FE data observed at low and high electric fields, respectively. 展开更多
关键词 field emission carbon films nano-sheet microwave plasma chemical vapour deposition
下载PDF
SYNTHESIS OF PPCuPc FILM BY MICROWAVE PLASMA CHEMICAL VAPORIZATION DEPOSITION(MPCVD)
8
作者 Ai Min YU Wen Guo XU +1 位作者 Wen Jun YANG Qin Han JIN 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第11期897-900,共4页
Using a low power microwave generator(W_(max)=100W) and a Surfatron discharge device, Plasma-polymerized copper phthalocyanine (PPCuPc) film was synthesised from monomer copper phthalocyanine(CuPc) by microwave plasma... Using a low power microwave generator(W_(max)=100W) and a Surfatron discharge device, Plasma-polymerized copper phthalocyanine (PPCuPc) film was synthesised from monomer copper phthalocyanine(CuPc) by microwave plasma chemical vaporization deposition(MPCVD) with Ar as incorporation gas. The film was characterized by FTIR and ESCA. The role of dissociation of chemical bond in the polymerization process and the influence of substrate temperature and material on deposition were investigated in some detail. 展开更多
关键词 FTIR MPCVD SYNTHESIS OF PPCuPc FILM BY microwave plasma chemical vaporIZATION deposition ESCA
下载PDF
Field Electron-Emission from a-CN<sub>x</sub>:H Films Formed on Al Films Using Supermagnetron Plasma CVD 被引量:1
9
作者 Haruhisa Kinoshita Sho Suzuki +1 位作者 Ryouhei Taguchi Hiroki Takeuchi 《Journal of Modern Physics》 2015年第11期1602-1608,共7页
Hydrogenated amorphous carbon nitride (a-CNx:H) films were formed on p-Si, Al films deposited on n-Si (Al/n-Si) and glass (SiO2) (Al/glass) substrates, using pulsed rf supermagnetron plasma chemical vapor deposition (... Hydrogenated amorphous carbon nitride (a-CNx:H) films were formed on p-Si, Al films deposited on n-Si (Al/n-Si) and glass (SiO2) (Al/glass) substrates, using pulsed rf supermagnetron plasma chemical vapor deposition (CVD) with N2/i-C4H10 mixed gases. The rf powers (13.56 MHz) of both the upper and lower electrodes were modulated by a 2.5-kHz pulse at a duty ratio of 12.5%. N2 gas concentration was controlled at 70%. The optical band gap of a-CNx:H films was about 0.75 eV. The a-CNx:H films deposited on substrates of p-Si, Al/n-Si and Al/glass showed low threshold emission electric fields (ETH) of 10, 13 and 12 V/μm, respectively. The a-CNx:H film deposited on low-cost Al film (Al/glass) showed a sufficiently low ETH of 12 V/μm, eliminating the need for high-cost p-Si substrates. 展开更多
关键词 Supermagnetron plasma chemical vapor deposition Amorphous Carbon Nitride field Emission
下载PDF
Simple method to rapidly fabricate chain-like carbon nanotube films and its field emission properties 被引量:2
10
作者 Zhi-yuan Wu Shuang-qi Hu Zhi-qian Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第3期371-375,共5页
A simple process to fabricate chain-like carbon nanotube (CNT) films by microwave plasma-enhanced chemical vapor deposition (MPCVD) was developed successfully. Prior to deposition, the Ti/Al2O3 substrates were gro... A simple process to fabricate chain-like carbon nanotube (CNT) films by microwave plasma-enhanced chemical vapor deposition (MPCVD) was developed successfully. Prior to deposition, the Ti/Al2O3 substrates were ground with Fe-doped SiO2 powder. The nano-structure of the deposited films was analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The field electron emission characteristics of the chain-like carbon nanotube films were measured under the vacuum of 10-5 Pa. The low turn-on field of 0.80 V/μm and the emission current density of 8.5 mA/cm2 at the electric field of 3.0 V/μm are obtained. Based on the above results, chain-like carbon nanotube films probably have important applications in cold cathode materials and electrode materials. 展开更多
关键词 carbon nanotube (CNT) CHAIN-LIKE film microwave plasma-enhanced chemical vapor deposition (MPCVD) field emission
下载PDF
Deposition and Boron Doping of Nano-Crystalline Diamond Thin Films on Poly-Crystalline Diamond Thick Films 被引量:1
11
作者 熊礼威 汪建华 +3 位作者 刘繁 满卫东 翁俊 刘鹏飞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第10期905-908,共4页
Boron-doped nano-crystalline diamond (NCD) thin films have been successfully deposited on well-polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD)... Boron-doped nano-crystalline diamond (NCD) thin films have been successfully deposited on well-polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor for the first time. Different surface pretreatment techniques are carried out under different gas conditions (CH4, H2, Ar, and CH4/H2) to eliminate the effect of grain boundaries on the growth of a smooth NCD intrinsic layer. Well doped NCD films have been fabricated in CH4/H2/B2H6 plasma by varying the atomic ratio of B/C and the substrate temperature. Atomic force microscopy (AFM) results show that pretreatment in pure CH4 plasma at 1000℃ is most effective for NCD growth, while hydrogen containing plasma is harmful to the surface smoothness of NCD thin fihns. Doping research indicates that the optimum parameters for the boron-doping of high-quality NCD thin films are B/C=300 ppm (10-6) and 800℃. 展开更多
关键词 microwave plasma chemical vapor deposition diamond films NANOMATERIALS
下载PDF
Synthesis and Temperature-dependent Electrochemical Properties of Boron-doped Diamond Electrodes on Titanium
12
作者 DU Li-li SUN Jian-rui +3 位作者 CUI Hang LI Hong-dong CUI Tian LIN Hai-bo 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第3期507-510,共4页
On the sand-blasting-treated titanium(Ti) substrate, the boron-doped diamond(BDD) electrodes with a wide potential window were prepared by microwave plasma chemical vapor deposition(MPCVD). The electrochemi- cal... On the sand-blasting-treated titanium(Ti) substrate, the boron-doped diamond(BDD) electrodes with a wide potential window were prepared by microwave plasma chemical vapor deposition(MPCVD). The electrochemi- cal oxidation ratios of phenol at BDD/Ti electrodes at elevated temperatures(from 20 ℃ to 80 ℃) were examined by the chemical oxygen demand(COD) of phenol electrolyte during electrolysis. The results show that the COD removal was increased at high temperatures and the optimized temperature for enhancing the electrochemical oxidation ratio of phenol is 60 ℃. The mechanism for the temperature-dependent electrochemical oxidation ratios of phenol at the electrodes was investigated. The study would be favorable for further improving the performance of BDD/Ti elec- trodes, especially working at high temperatures. 展开更多
关键词 BDD/Ti electrode microwave plasma chemical vapor deposition PHENOL Electrochemical degradation
下载PDF
Enhanced field emission characteristics of thin-Au-coated nano-sheet carbon films 被引量:2
13
作者 顾广瑞 伊藤利道 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4547-4551,共5页
This paper reports that the nano-sheet carbon films (NSCFs) were fabricated on Si wafer chips with hydrogen- methane gas mixture by means of quartz-tube-type microwave plasma chemical vapour deposition (MWPCVD). I... This paper reports that the nano-sheet carbon films (NSCFs) were fabricated on Si wafer chips with hydrogen- methane gas mixture by means of quartz-tube-type microwave plasma chemical vapour deposition (MWPCVD). In order to further improve the field emission (FE) characteristics, a 5-nm Au film was prepared on the samples by using electron beam evaporation. The FE properties were obviously improved due to depositing Au thin film on NSCFs. The FE current density at a macroscopic electric field, E, of 9 V/μm was increased from 12.4 mA/cm2 to 27.2 mA/cm2 and the threshold field was decreased from 2.6 V/μm to 2.0 V/μm for Au-coated carbon films. A modified F-N model considering statistic effects of FE tip structures in the low E region and a space-chavge-limited-current effect in the high E region were applied successfully to explain the FE data of the Au-coated NSCF. 展开更多
关键词 nano-sheet carbon films field emission microwave plasma chemical vapour deposition space-charge-limited-current
下载PDF
Fowler-Nordheim Tunneling, Photovoltaic Applications and New Band Structure Models of Electroconductive a-CNx:H Films Formed by Supermagnetron Plasma CVD
14
作者 Haruhisa Kinoshita 《Journal of Modern Physics》 2016年第15期2008-2027,共21页
Hydrogenated amorphous carbon nitride (a-CN<sub>x</sub>:H) films were formed on Al films deposited on Si or glass (SiO<sub>2</sub>) substrates, using pulsed radio frequency (PRF) supermagnetron... Hydrogenated amorphous carbon nitride (a-CN<sub>x</sub>:H) films were formed on Al films deposited on Si or glass (SiO<sub>2</sub>) substrates, using pulsed radio frequency (PRF) supermagnetron plasma (SMP) chemical vapor deposition (CVD) with N<sub>2</sub>/i-C<sub>4</sub>H<sub>10</sub> mixed gases. a-CN<sub>x</sub>:H films were grown under the upper and lower electrode RF powers (13.56 MHz) of continuous and pulsed conditions, respectively, which showed low band gap of about 0.7 eV. a-CN<sub>x</sub>:H films deposited on the Al/Si or Al/SiO<sub>2</sub> substrates showed same low threshold emission electric field (ETH) of 12 V/μm. Multiple layer of Al or ITO (anode)/50nm-SiO<sub>2</sub>/a-CN<sub>x</sub>:H/Al (cathode)/Si structures showed Fowler-Nordheim (FN) electron tunneling effect in both forward and reverse current directions. 12.5 nm a-CN<sub>x</sub>:H film on p-Si substrate showed a photoelectric conversion. Energy band structure and electron conduction models were proposed for the active states of both the field emission and FN tunneling devices and photovoltaic cells. 展开更多
关键词 Supermagnetron plasma chemical vapor deposition Amorphous Carbon Nitride Energy Band Electron Conduction field Emission FN Tunneling Photovoltaic Cell
下载PDF
SiC基GaN上多晶金刚石散热膜生长及其影响
15
作者 盛百城 刘庆彬 +3 位作者 何泽召 李鹏雨 蔚翠 冯志红 《半导体技术》 CAS 北大核心 2024年第5期455-460,共6页
通过微波等离子体化学气相沉积(MPCVD)法,在SiC基GaN高电子迁移率晶体管(HEMT)异质结构材料上生长多晶金刚石散热膜,采用光学显微镜(OM)、拉曼光谱、非接触霍尔测试系统、X射线衍射(XRD)和扫描电子显微镜(SEM)对生长样品进行表征,研究... 通过微波等离子体化学气相沉积(MPCVD)法,在SiC基GaN高电子迁移率晶体管(HEMT)异质结构材料上生长多晶金刚石散热膜,采用光学显微镜(OM)、拉曼光谱、非接触霍尔测试系统、X射线衍射(XRD)和扫描电子显微镜(SEM)对生长样品进行表征,研究了生长温度、多晶金刚石散热膜厚度对GaN HEMT异质结构材料性能的影响。测试结果表明,当多晶金刚石生长温度为625℃,散热膜厚度为20μm时,GaN材料载流子迁移率降低9.8%,载流子浓度上升5.3%,(002)衍射峰半高宽增加40%。生长温度越高,金刚石散热膜的生长速率越快。当金刚石散热膜厚度相差不大时,生长温度越高,GaN所受拉应力越大,材料电特性衰退越明显。多晶金刚石高温生长过程中,金刚石引入的应力未对GaN结构产生破坏作用,GaN材料中没有出现孔洞等缺陷。 展开更多
关键词 多晶金刚石 散热膜 氮化镓 微波等离子体化学气相沉积(MPCVD)法 电性能 应力 孔洞缺陷
下载PDF
烧结NdFeB磁体表面Zn-Al/T8超疏水复合涂层的显微组织及耐蚀性
16
作者 张晓虎 罗军明 +4 位作者 徐吉林 陈金 黄俊 马永存 薛名山 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第5期1606-1617,共12页
为提升烧结NdFeB磁体的耐蚀性,采用旋涂法和等离子体增强化学气相沉积技术在其表面制备Zn-Al/T8(2-全氟辛基乙基丙烯酸酯)超疏水复合涂层。结果表明,Zn-Al涂层主要由片层状的Zn和Al相组成,厚度大约为28μm。Zn-Al/T8复合涂层的接触角达... 为提升烧结NdFeB磁体的耐蚀性,采用旋涂法和等离子体增强化学气相沉积技术在其表面制备Zn-Al/T8(2-全氟辛基乙基丙烯酸酯)超疏水复合涂层。结果表明,Zn-Al涂层主要由片层状的Zn和Al相组成,厚度大约为28μm。Zn-Al/T8复合涂层的接触角达到151.78°,而滚动角仅为5.13°,说明Zn-Al/T8复合涂层可提供一个超疏水表面。Zn-Al涂层和Zn-Al/T8复合涂层对烧结NdFeB的磁性能均无显著影响。Zn-Al涂层通过牺牲阳极来提高NdFeB磁体的耐蚀性,而Zn-Al/T8复合涂层通过超疏水表面进一步提升耐蚀性。Zn-Al/T8复合涂层较Zn-Al涂层具有更好的耐盐雾性能。Zn-Al/T8超疏水复合涂层是一种非常有前途的烧结NdFeB磁体保护涂层。 展开更多
关键词 显微组织 耐蚀性 烧结NDFEB磁体 Zn-Al涂层 超疏水表面 旋涂法 等离子体增强化学气相沉积
下载PDF
微波PECVD技术制备高阻隔PET复合薄膜研究
17
作者 印莲华 刘忠伟 《真空科学与技术学报》 CAS CSCD 北大核心 2024年第11期976-984,共9页
文章通过在聚对苯二甲酸乙二醇酯(PET)基底表面沉积一定厚度的高阻隔薄膜,改善PET材料阻隔性能。采用微波等离子体化学气相沉积(PECVD)技术在PET基底上沉积氧化硅(SiO_(x))和类金刚石(DLC)阻隔薄膜,研究不同单体比例制备的薄膜结构、微... 文章通过在聚对苯二甲酸乙二醇酯(PET)基底表面沉积一定厚度的高阻隔薄膜,改善PET材料阻隔性能。采用微波等离子体化学气相沉积(PECVD)技术在PET基底上沉积氧化硅(SiO_(x))和类金刚石(DLC)阻隔薄膜,研究不同单体比例制备的薄膜结构、微观形貌和阻隔性能有何异同。结果表明单体比例的不同,显著影响SiO_(x)和DLC薄膜的结构、微观形貌和阻隔性能。一定工艺条件下,SiO_(x)和DLC薄膜均能充分发挥各自的阻隔作用,降低PET材料的氧气(O_(2))透过率。采用乙炔(C_(2)H_(2))和氩气(Ar)混合气体制备DLC薄膜,少量Ar有利于反应单体离解,同时对薄膜表面刻蚀作用较弱,薄膜沉积速度快,表面颗粒致密,可有效阻挡气体渗透,制得的DLC/PET复合膜的氧气透过率可低至0.58 mL·m^(-2)·d,远低于未表面涂布改性PET薄膜的130 mL·m^(-2)·d。以六甲基二硅氧烷(HMDSO)和氧气(O_(2))为反应单体制备SiO_(x)薄膜,O_(2)比例较高时,薄膜中的硅(Si)、氧(O)元素的键合趋于网状结构和笼状结构,增加了气体的扩散难度,所制备的SiO_(x)/PET复合膜氧气透过率可低至3.69 mL·m^(-2)·d。研究提出的利用微波PECVD技术在PET基底上沉积阻隔性SiO_(x)或DLC阻隔薄膜,可为高阻隔PET复合薄膜的生产工艺提供有益的参考。 展开更多
关键词 微波等离子体增强化学气相沉积 阻隔性能 氧化硅 类金刚石 聚对苯二甲酸乙二醇酯
下载PDF
硅氧共掺DLC薄膜的制备及阻隔性能研究
18
作者 印莲华 刘忠伟 《包装工程》 CAS 北大核心 2024年第19期171-178,共8页
目的研究硅(Si)、氧(O)元素掺杂对类金刚石(Diamond like Carbon,DLC)薄膜沉积、结构、表面形貌以及阻隔性能的影响,为高效制备高阻隔硅氧共掺类金刚石(Si and O Incorporated DLC,Si/O-DLC)薄膜提供新的思路参考。方法利用微波等离子... 目的研究硅(Si)、氧(O)元素掺杂对类金刚石(Diamond like Carbon,DLC)薄膜沉积、结构、表面形貌以及阻隔性能的影响,为高效制备高阻隔硅氧共掺类金刚石(Si and O Incorporated DLC,Si/O-DLC)薄膜提供新的思路参考。方法利用微波等离子体化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)技术在聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)基底表面沉积Si/O-DLC薄膜,具体研究反应单体中六甲基二硅氧烷(Hexaethyldisiloxane,HMDSO)含量对薄膜沉积和阻隔性能的影响。通过台阶仪、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、原子力显微镜(AFM)表征薄膜厚度、结构和微观形貌,并通过测试氧气透过率表征复合薄膜的阻隔性能。结果随着混合气体中HMDSO含量增加,薄膜的沉积速率提高,不同高度位置上沉积速率波动变弱,平均沉积速率最高达到310 nm·min^(–1),同时,薄膜中Si、O元素含量增加,相关的键合结构含量增加,薄膜表面致密性变差,氧气阻隔性能变弱;当HMDSO流量控制在1 mL·min^(–1)时,PET薄膜的氧气透过率可从未涂覆时的132mL·m^(2)·d^(–1)降低至2mL·m^(2)·d^(-1),阻隔性能明显改善。结论在一定工艺条件下,通过微波PECVD技术在PET薄膜表面涂覆Si/O-DLC薄膜,可明显改善其阻隔性能。 展开更多
关键词 微波等离子体化学气相沉积 类金刚石 聚对苯二甲酸乙二醇酯 阻隔性能 元素掺杂
下载PDF
纳米金刚石膜/{100}晶面多晶金刚石膜台阶法快速生长研究
19
作者 唐春玖 侯海虹 +1 位作者 陈维霞 江学范 《应用技术学报》 2024年第2期133-139,共7页
通过高功率微波等离子体化学气相沉积(MPCVD)以及台阶式基底排列方法,可以在一次沉积过程中同时沉积纳米晶粒及<100>取向的{100}面多晶金刚石薄膜。详细比较在同一次沉积中同时制备的多种不同类别的金刚石产物的生长速率。采用台... 通过高功率微波等离子体化学气相沉积(MPCVD)以及台阶式基底排列方法,可以在一次沉积过程中同时沉积纳米晶粒及<100>取向的{100}面多晶金刚石薄膜。详细比较在同一次沉积中同时制备的多种不同类别的金刚石产物的生长速率。采用台阶法并添加少量空气,微波功率从2.0k W增加至3.2 kW,在下面大硅片上生长的纳米金刚石膜的平均生长速率可从0.3μm/h增大到3.0μm/h;而在上面小硅片上生长的纳米金刚石膜的平均生长速率从3.8μm/h也增加到11.2μm/h,同时产物也转变为{100}晶面的多晶膜。另外,在上面小硅片上生长的金刚石膜的边角效应明显,在边界生长的金刚石产物的生长速率更高,从17.0μm/h增大到27.1μm/h。该结果表明少量氮气和氧气同时添加对金刚石生长的形貌多样性调节作用和对生长速率的提升作用强烈依赖于生长条件。 展开更多
关键词 纳米金刚石膜 {100}晶面 台阶法 微波等离子体化学气相沉积(MPCVD)
下载PDF
Synthesis of a Large Diamond Crystal with a Smooth(100) Facet at its Top Through MPCVD 被引量:1
20
作者 朱金凤 满卫东 +2 位作者 吕继磊 涂昕 汪建华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第11期1144-1148,共5页
A large diamond crystal up to 500 μm in diameter with a smooth (100) facet at its top has been synthesized on Mo substrate through microwave plasma chemical vapor deposition (MPCVD). Its morphology and quality we... A large diamond crystal up to 500 μm in diameter with a smooth (100) facet at its top has been synthesized on Mo substrate through microwave plasma chemical vapor deposition (MPCVD). Its morphology and quality were characterized by scanning electron microscopy (SEM), and the growth mechanism was roughly illustrated from both macroscopic and microscopic viewpoints. It was found that morphological instabilities are a major factor resulting in synthesis of large diamond crystals, moreover, high microwave power density (MPD), high CH4 concentrations, high pressure, high substrate surface temperature and the addition of a small amount of O2 were also necessary for the synthesis of large diamond crystals. 展开更多
关键词 large crystal microwave plasma chemical vapor deposition smooth (100) facet
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部