During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks i...During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.展开更多
In this study, the propagation of electromagnetic waves in one-dimensional plasma photonic crystals (PPCs), namely, superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric ...In this study, the propagation of electromagnetic waves in one-dimensional plasma photonic crystals (PPCs), namely, superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric material, is simulated numerically using the finite-difference time-domain (FDTD) algorithm. A perfectly matched layer (PML) absorbing technique is used in this simulation. The reflection and transmission coefficients of electromagnetic (EM) waves through PPCs are calculated. The characteristics of the photonic band gap (PBG) are discussed in terms of plasma density, dielectric constant ratios, number of periods, and introduced layer defect. These may provide some useful information for designing plasma photonic crystal devices.展开更多
The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid...The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid plasma model. An analytical study of the reflection of electrostatic wave propagation along a magnetized non-uniform relativistic plasma slab subjected to an intense HF electric field is presented and compared with the case of a non relativistic plasma. It is found that, when the frequency of the incident wave is close to the relativistic electron plasma frequency, the plasma is less reflective due to the presence of both an HF field and the effect of relativistic electrons. On the other hand, for a low-frequency incident wave the reflection coefficient is directly proportional to the amplitude of the HF field. Also, it is shown that the relativistic electron plasma leads to a decrease in the value of reflection coefficient in comparison with the case of the non relativistic plasma.展开更多
文摘During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.
基金supported by the Program for New Century Excellent Talents in University(No.NCET-05-0575)the Education Science Foundation of Jiangxi Province(No.Z-03510)
文摘In this study, the propagation of electromagnetic waves in one-dimensional plasma photonic crystals (PPCs), namely, superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric material, is simulated numerically using the finite-difference time-domain (FDTD) algorithm. A perfectly matched layer (PML) absorbing technique is used in this simulation. The reflection and transmission coefficients of electromagnetic (EM) waves through PPCs are calculated. The characteristics of the photonic band gap (PBG) are discussed in terms of plasma density, dielectric constant ratios, number of periods, and introduced layer defect. These may provide some useful information for designing plasma photonic crystal devices.
文摘The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid plasma model. An analytical study of the reflection of electrostatic wave propagation along a magnetized non-uniform relativistic plasma slab subjected to an intense HF electric field is presented and compared with the case of a non relativistic plasma. It is found that, when the frequency of the incident wave is close to the relativistic electron plasma frequency, the plasma is less reflective due to the presence of both an HF field and the effect of relativistic electrons. On the other hand, for a low-frequency incident wave the reflection coefficient is directly proportional to the amplitude of the HF field. Also, it is shown that the relativistic electron plasma leads to a decrease in the value of reflection coefficient in comparison with the case of the non relativistic plasma.