The effect of far-infrared (FIR) irradiation pasteurization on fungi was quantitatively evaluated and compared with the effect of thermal conductive heating. After the bulk temperature of the sterile saline irradiated...The effect of far-infrared (FIR) irradiation pasteurization on fungi was quantitatively evaluated and compared with the effect of thermal conductive heating. After the bulk temperature of the sterile saline irradiated by FIR reached a steady given temperature, yeast cells (Candida albicans NBRC 1950 and Saccharomyces cerevisiae NBRC 1067) or fungal spores (Aspergillus niger NBRC 4781) were inoculated and FIR heating was conducted. A mullite cylinder FIR heater, with a main wavelength of 4 - 7 μm, was used for FIR heating. Death of fungi by FIR heating and by thermal conductive heating both followed first-order reaction kinetics, and the apparent death rate constants under different temperature conditions were obtained. For the same bulk temperatures, pasteurization by FIR heating was more effective than thermal conductive heating. The activation energy for the death of fungi by FIR irradiation was slightly lower than thermal conductive heating, indicating differences in the mechanism of action.展开更多
On the basis of the growth mechanism of a GaAs/InAs nanoring, we propose a fine model which reflects the confinement details of real nanoring. Through calculations of the two-electron energy and far-infrared (FIR) s...On the basis of the growth mechanism of a GaAs/InAs nanoring, we propose a fine model which reflects the confinement details of real nanoring. Through calculations of the two-electron energy and far-infrared (FIR) spectra, we find that the ring topological structure and electron-electron interaction have great influence on the FIR spectra. The two unknown transition peaks in the experiment are determined theoretically. The theoretical results are in good agreement with the experiments.展开更多
To promote the application of far-infrared technology,functional far-infrared devices with high performance are needed.Here,we propose a design scheme to develop a wide-incident-angle far-infrared absorber,which consi...To promote the application of far-infrared technology,functional far-infrared devices with high performance are needed.Here,we propose a design scheme to develop a wide-incident-angle far-infrared absorber,which consists of a periodically semicircle-patterned graphene sheet,a lossless inter-dielectric spacer and a gold reflecting film.Under normal incidence for both TE-and TM-polarization modes,the bandwidth of 90%absorption of the proposed far-infrared absorber is ranging from 6.76 THz to 11.05 THz.The absorption remains more than 90%over a 4.29-THz broadband range when the incident angle is up to 50◦for both TE-and TM-polarization modes.The peak absorbance of the absorber can be flexibly tuned from 10%to 100%by changing the chemical potential from 0 eV to 0.6 eV.The tunable broadband far-infrared absorber has promising applications in sensing,detection,and stealth objects.展开更多
We have studied the far-infrared spectra of two-electron vertically coupled quantum dots in an axial magnetic field by exact diagonalization. The calculated results show an obvious difference in role between the inter...We have studied the far-infrared spectra of two-electron vertically coupled quantum dots in an axial magnetic field by exact diagonalization. The calculated results show an obvious difference in role between the interactions for spin S = 1 and for spin S = O. The results support the possibility to evaluate the interactions by far-infrared spectroscopy in vertically coupled quantum dots.展开更多
We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot resu...We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot results in more coherent superpositions in the low-lying states and exhibits unique anti-crossing in the two-electron FIR spectrum modulated by a magnetic field. We also find that the Coulomb correlation effect can make the FIR spectrum of coupled quantum dot without strict parity deviate greatly from Kohn theorem, which is just contrary to the symmetric case. Our results therefore suggest that FIR spectrum may be used to determine the symmetry of coupled quantum dot and to evaluate the degree of Coulomb interaction.展开更多
Graphene materials can emit far-infrared ray, but the biological effects of graphene far-infrared ray have not been studied. Furthermore, the non-thermal biological effect of far-infrared ray on organism has not been ...Graphene materials can emit far-infrared ray, but the biological effects of graphene far-infrared ray have not been studied. Furthermore, the non-thermal biological effect of far-infrared ray on organism has not been systematically studied independently of the thermal effect. The purpose of this study was to investigate the non-thermal biological effect of graphene far-infrared ray (gFIR) on Saccharomyces cerevisiae cells. In this work, stringent control of the cultivation conditions was carried out to ensure the stability and constancy of the culture and its temperature. Flow cytometry was used to detect the non-thermal effect of gFIR irradiation on cell membrane permeability, mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) content. Compared with the control group, cell membrane permeability of the gFIR exposure cells decreased by 4.7%, MMP increased by 16% and intracellular ROS reduced by 10.7%. The results revealed the valuable features of the non-thermal biological effect of gFIR on Saccharomyces cerevisiae cells, and the further analysis demonstrated that graphene far-infrared materials should have great application value in disease prevention and health promotion.展开更多
We observed the nearby galaxy M31 in the 〔C II〕158 μm emission line. An extended component was detected over the central 1 5 kpc region with a line-to-continuum ratio of 〔C II〕/〔40-120μm〕6×10 -3 . This ...We observed the nearby galaxy M31 in the 〔C II〕158 μm emission line. An extended component was detected over the central 1 5 kpc region with a line-to-continuum ratio of 〔C II〕/〔40-120μm〕6×10 -3 . This ratio is 3 times larger than that of the Galactic counterpart and is comparable to that in the general Galactic Plane. We expect that the difference between the two central regions are due to different gas densities; the self-shielding of CO molecules decreases the C + abundance at the higher density in the Galactic case.展开更多
<strong>Objective: </strong>Utilizing VISIA skin tester to quantitatively evaluate the effect of low energy far-infrared irradiation on healthy people’s facial skin. <strong>Methods:</strong> ...<strong>Objective: </strong>Utilizing VISIA skin tester to quantitatively evaluate the effect of low energy far-infrared irradiation on healthy people’s facial skin. <strong>Methods:</strong> 60 volunteers were selected in hospital from September 2019 to June 2020, and the total score of face, skin spots, texture, wrinkles and pores were observed before and after low energy far-infrared irradiation treatment with VISIA skin tester. <strong>Results:</strong> After 2 weeks of low energy far-infrared irradiation treatment, the total skin score of volunteers increased significantly (P < 0.01). In the itemized statistics, the moisture value, stain value and wrinkle value increased significantly (P < 0.05). <strong>Conclusion:</strong> Low energy far-infrared irradiation can significantly improve the facial skin quality of healthy people.展开更多
To optimize the technology of on-line detection technology and automatic control system,the fresh turnip harvested in this year as test material,by analyzing the results of single factor experiment,heating temperature...To optimize the technology of on-line detection technology and automatic control system,the fresh turnip harvested in this year as test material,by analyzing the results of single factor experiment,heating temperature(60-80℃),vacuum in the warehouse(3 000-4 000 Pa),and material thickness(4-10 mm)were used as main test factors.Taking dehydration rate,rehydration rate,and VC mass ratio of dried product as test indexes,and using the quadratic general rotary unitized design approach,the influence and change law of far-infrared vacuum drying on drying turnip was studied.Analysis of interaction effects between the factors and the regression model,the regression equation was established,and the objective function optimization,the integrated balance method were adopted to identify the optimal conditions:the vacuum was 3000 Pa,the heating temperature was 70℃,and the material thickness was 7 mm.Under these conditions,the dehydration rate of dried turnip products was 25.23 g/(m2·h),VC mass ratio was2.05 mg/g,and the optimal value of rehydration ratio was 3.95.Finally,the turnip dry products were observed by SESM and the results were analyzed.The result showed that the cell wall breakage rate,cell deformation rate,and low profile shrinkage rate of turnip dried by infrared vacuum were lower;the surface smoothness preservation rate was higher;the cell tissue preservation rate was more than 80%,and the cell breakage and distortion was less.And the microscopic morphology of cell was kept well.Under these conditions,the original organization and structure of the sample were truly reflected,the better drying effect was achieved,the sensory quality of dried products was guaranteed.This study provide a technical basis for the intelligent far-infrared vacuum drying technology applying for fast drying of high moisture materials and a reference for improving the quality of the far-infrared vacuum drying of turnip.展开更多
Rare earth composite materials radiating far-infrared rays were prepared according to far infrared absorption spectrum of main component in liquefied petroleum gas (LPG). The composite materials were characterized by ...Rare earth composite materials radiating far-infrared rays were prepared according to far infrared absorption spectrum of main component in liquefied petroleum gas (LPG). The composite materials were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transformed infrared spectra(FTIR). The results show that after the composite materials were calcined at 873 K for 4 h, FTIR spectra of rare earth composite materials display two new peaks at 1336 and 2926 cm-1 available for activating LPG.展开更多
We incorporated a superheated steam blanching pretreatment step into a paprika drying process and compared the far-infrared(FIR)drying rates,hardness of the sample surfaces,cell membrane stabilities,and energy consump...We incorporated a superheated steam blanching pretreatment step into a paprika drying process and compared the far-infrared(FIR)drying rates,hardness of the sample surfaces,cell membrane stabilities,and energy consumption of blanched and non-blanched paprika.The average drying rate of blanched paprika samples during FIR drying was higher than that of non-blanched samples.The hardness and cell membrane stability of dried blanched samples were lower than those of non-blanched samples.We estimated that the softening of the sample surfaces and injury to the cell membranes caused the drying rate to increase.The total energy consumption of the FIR drying of paprika was reduced by approximately 30%by introducing the blanching pretreatment.These findings contribute to the development of environmentally friendly FIR drying techniques for paprika.展开更多
A single-channel far-infrared (FIR) laser interferometer was developed to measure the line averaged electron density on the EAST tokamak. The structure of the single-channel FIR laser interferometer is described in ...A single-channel far-infrared (FIR) laser interferometer was developed to measure the line averaged electron density on the EAST tokamak. The structure of the single-channel FIR laser interferometer is described in detail. The evolution of density sawtooth oscillation was measured by means the FIR laser interferometer, and was identified by electron cyclotron emission (ECE) signals and soft X-ray intensity. The discharges with and without sawtooth were compared with each other in the Hugill diagram.展开更多
We report a far-infrared absorption study of internal transitions of shallow Be acceptors in both bulk GaAs and a series of δ-doped GaAs/AlAs multiple quantum well samples with well thicknesses of 20,15 and 10 nm. Lo...We report a far-infrared absorption study of internal transitions of shallow Be acceptors in both bulk GaAs and a series of δ-doped GaAs/AlAs multiple quantum well samples with well thicknesses of 20,15 and 10 nm. Low temperature far-infrared absorp-tion measurements clearly show three principal absorption lines due to transitions of Be-acceptor states from the ground state to the first three odd-parity excited states,respec-tively. Using a variational principle,the 2p-1s transition energies of quantum confined Be acceptors are calculated as a function of the well width. It is found that the theoretical calculation of the 2pz → 1s transitions is in good agreement with the D-like line experi-mental data.展开更多
Far-infrared ray (FIR) is electromagnetic wave between 4 and 1000 μm. FIR causes heating, but how it affects cells is not well understood. In this study, we developed a culture incubator that can continuously irradia...Far-infrared ray (FIR) is electromagnetic wave between 4 and 1000 μm. FIR causes heating, but how it affects cells is not well understood. In this study, we developed a culture incubator that can continuously irradiate cells with FIR and examined the effects of FIR on five human cancer cell lines, namely A431 (vulva), A549 (lung), HSC3 (tongue), MCF7 (breast) and Sa3 (gingiva). We found that FIR inhibits cell proliferation and induces cell hypertrophy without apoptosis in A549, HSC3 and Sa3 cells. Flow cytometry revealed that the inhibition of proliferation was due to G2/M arrest. Contrary, FIR did not inhibit cell proliferation and cause cell hypertrophy in A431 or MCF7 cells. Microarray analysis revealed that FIR suppressed the expression of cell proliferation-related and stress-responsive genes in FIR-sensitive cell lines (A549, HSC3 and Sa3). ATF3 in particular was identified as a key mediator of the FIR effect. Over-expression of ATF3 inhibited cell proliferation and knockdown of ATF3 mRNA using an antisense oligonucleotide suppressed FIR-induced growth arrest. These results indicate that a body temperature range of FIR radiation suppresses the proliferation of A549, HSC3, Sa3 cells and it appears that ATF3 play important roles in this effect.展开更多
The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and o...The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].展开更多
In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature...In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature is around 29 K. Large Grains are in fact Bose-Einstein condensates of proposed dineutrinos, and are responsible for the cosmic Far-Infrared Background (FIRB) radiation. The distribution of the energy density of all components of the World (protons, electrons, photons, neutrinos, and dark matter particles) is considered. We present an overview of the World- Universe Model (WUM) and pay particular attention to the self-consistent set of time-varying values of basic parameters of the World: the age and critical energy density;Newtonian parameter of gravitation and Hubble’s parameter;temperatures of the cosmic Microwave Background radiation and the peak of the cosmic FIRB radiation;Fermi coupling parameter and coupling parameters of the proposed Super-Weak and Extremely-Weak interactions. Additionally, WUM forecasts the masses of dark matter particles, axions, and neutrinos;proposes two fundamental parameters of the World: fine-structure constant α and the quantity Q which is the dimensionless value of the fifth coordinate, and three fundamental physical units: basic unit of momentum, energy density, and energy flux density. WUM suggests that all time-dependent parameters of the World are inter- connected and in fact dependent on Q. We recommend adding the quantity Q to the list of the CODATA-recommended values.展开更多
The precision of plasma electron density and Faraday rotation angle measurement is a key indicator for far-infrared laser interferometer/polarimeter plasma diagnosis. To improve the precision, a new multi-channel high...The precision of plasma electron density and Faraday rotation angle measurement is a key indicator for far-infrared laser interferometer/polarimeter plasma diagnosis. To improve the precision, a new multi-channel high signal-to-noise ratio HCOOH interferometer/polarimeter has been developed on the HL-2A tokamak. It has a higher level requirement for phase demodulation precision. This paper introduces an improved real-time fast Fourier transform algorithm based on the field programmable gate array, which significantly improves the precision. We also apply a real-time error monitoring module (REMM) and a stable error inhibiting module (SEIM) for precision control to deal with the weak signal. We test the interferometer/polarimeter system with this improved precision control method in plasma discharge experiments and simulation experiments. The experimental results confirm that the plasma electron density precision is better than 1/3600 fringe and the Faraday rotation angle measurement precision is better than 1/900 fringe, while the temporal resolution is 80 ns. This performance can fully meet the requirements of HL-2A.展开更多
Vacuum far-infrared radiation(VFIR)drying has recently received many attentions because of its effective and successful applications in drying some agricultural products.The VFIR drying of Radix Rehmanniae was conduct...Vacuum far-infrared radiation(VFIR)drying has recently received many attentions because of its effective and successful applications in drying some agricultural products.The VFIR drying of Radix Rehmanniae was conducted and Weibull distribution function was applied to fit the drying kinetics in this study.The results showed that the increase of radiation heater temperature and the decrease of chamber pressure could reduce drying time obviously.Compared with single diffusion equation,Weibull distribution function had higher precision to fit the drying curves of VFIR drying of Rehmanniae.The effective moisture diffusivity(Deff)increased with the increase of heater temperature and the decrease of pressure.Scanning electron telescope(SEM)analysis showed that more porous surface could be observed after VFIR drying,which is beneficial to enhance moisture diffusivity and drying rate as well.展开更多
This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, ev...This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.展开更多
In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Pr...In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.展开更多
文摘The effect of far-infrared (FIR) irradiation pasteurization on fungi was quantitatively evaluated and compared with the effect of thermal conductive heating. After the bulk temperature of the sterile saline irradiated by FIR reached a steady given temperature, yeast cells (Candida albicans NBRC 1950 and Saccharomyces cerevisiae NBRC 1067) or fungal spores (Aspergillus niger NBRC 4781) were inoculated and FIR heating was conducted. A mullite cylinder FIR heater, with a main wavelength of 4 - 7 μm, was used for FIR heating. Death of fungi by FIR heating and by thermal conductive heating both followed first-order reaction kinetics, and the apparent death rate constants under different temperature conditions were obtained. For the same bulk temperatures, pasteurization by FIR heating was more effective than thermal conductive heating. The activation energy for the death of fungi by FIR irradiation was slightly lower than thermal conductive heating, indicating differences in the mechanism of action.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11074025)the National Basic Research Program of China (Grant No. 2011CB922200)the China Academy of Engineering and Physics(‘909’)
文摘On the basis of the growth mechanism of a GaAs/InAs nanoring, we propose a fine model which reflects the confinement details of real nanoring. Through calculations of the two-electron energy and far-infrared (FIR) spectra, we find that the ring topological structure and electron-electron interaction have great influence on the FIR spectra. The two unknown transition peaks in the experiment are determined theoretically. The theoretical results are in good agreement with the experiments.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFF0200306)the National Natural Science Foundation of China(Grant Nos.61871355 and 61831012).
文摘To promote the application of far-infrared technology,functional far-infrared devices with high performance are needed.Here,we propose a design scheme to develop a wide-incident-angle far-infrared absorber,which consists of a periodically semicircle-patterned graphene sheet,a lossless inter-dielectric spacer and a gold reflecting film.Under normal incidence for both TE-and TM-polarization modes,the bandwidth of 90%absorption of the proposed far-infrared absorber is ranging from 6.76 THz to 11.05 THz.The absorption remains more than 90%over a 4.29-THz broadband range when the incident angle is up to 50◦for both TE-and TM-polarization modes.The peak absorbance of the absorber can be flexibly tuned from 10%to 100%by changing the chemical potential from 0 eV to 0.6 eV.The tunable broadband far-infrared absorber has promising applications in sensing,detection,and stealth objects.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674084)
文摘We have studied the far-infrared spectra of two-electron vertically coupled quantum dots in an axial magnetic field by exact diagonalization. The calculated results show an obvious difference in role between the interactions for spin S = 1 and for spin S = O. The results support the possibility to evaluate the interactions by far-infrared spectroscopy in vertically coupled quantum dots.
基金supported by the National Natural Science Foundation of China (Grant No.11074025)the National Basic Research Program of China (Grant No.2011CB922200)a grant from the China Academy of Engineering Physics
文摘We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot results in more coherent superpositions in the low-lying states and exhibits unique anti-crossing in the two-electron FIR spectrum modulated by a magnetic field. We also find that the Coulomb correlation effect can make the FIR spectrum of coupled quantum dot without strict parity deviate greatly from Kohn theorem, which is just contrary to the symmetric case. Our results therefore suggest that FIR spectrum may be used to determine the symmetry of coupled quantum dot and to evaluate the degree of Coulomb interaction.
文摘Graphene materials can emit far-infrared ray, but the biological effects of graphene far-infrared ray have not been studied. Furthermore, the non-thermal biological effect of far-infrared ray on organism has not been systematically studied independently of the thermal effect. The purpose of this study was to investigate the non-thermal biological effect of graphene far-infrared ray (gFIR) on Saccharomyces cerevisiae cells. In this work, stringent control of the cultivation conditions was carried out to ensure the stability and constancy of the culture and its temperature. Flow cytometry was used to detect the non-thermal effect of gFIR irradiation on cell membrane permeability, mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) content. Compared with the control group, cell membrane permeability of the gFIR exposure cells decreased by 4.7%, MMP increased by 16% and intracellular ROS reduced by 10.7%. The results revealed the valuable features of the non-thermal biological effect of gFIR on Saccharomyces cerevisiae cells, and the further analysis demonstrated that graphene far-infrared materials should have great application value in disease prevention and health promotion.
文摘We observed the nearby galaxy M31 in the 〔C II〕158 μm emission line. An extended component was detected over the central 1 5 kpc region with a line-to-continuum ratio of 〔C II〕/〔40-120μm〕6×10 -3 . This ratio is 3 times larger than that of the Galactic counterpart and is comparable to that in the general Galactic Plane. We expect that the difference between the two central regions are due to different gas densities; the self-shielding of CO molecules decreases the C + abundance at the higher density in the Galactic case.
文摘<strong>Objective: </strong>Utilizing VISIA skin tester to quantitatively evaluate the effect of low energy far-infrared irradiation on healthy people’s facial skin. <strong>Methods:</strong> 60 volunteers were selected in hospital from September 2019 to June 2020, and the total score of face, skin spots, texture, wrinkles and pores were observed before and after low energy far-infrared irradiation treatment with VISIA skin tester. <strong>Results:</strong> After 2 weeks of low energy far-infrared irradiation treatment, the total skin score of volunteers increased significantly (P < 0.01). In the itemized statistics, the moisture value, stain value and wrinkle value increased significantly (P < 0.05). <strong>Conclusion:</strong> Low energy far-infrared irradiation can significantly improve the facial skin quality of healthy people.
基金the National Science and Technology Support Program(2014BAD06B00)Heilongjiang Province,the Application of Technology Research and Development Program(GA15B402)Heilongjiang Province,the New Century Outstanding Talent Training Program(1155-NCET-012)
文摘To optimize the technology of on-line detection technology and automatic control system,the fresh turnip harvested in this year as test material,by analyzing the results of single factor experiment,heating temperature(60-80℃),vacuum in the warehouse(3 000-4 000 Pa),and material thickness(4-10 mm)were used as main test factors.Taking dehydration rate,rehydration rate,and VC mass ratio of dried product as test indexes,and using the quadratic general rotary unitized design approach,the influence and change law of far-infrared vacuum drying on drying turnip was studied.Analysis of interaction effects between the factors and the regression model,the regression equation was established,and the objective function optimization,the integrated balance method were adopted to identify the optimal conditions:the vacuum was 3000 Pa,the heating temperature was 70℃,and the material thickness was 7 mm.Under these conditions,the dehydration rate of dried turnip products was 25.23 g/(m2·h),VC mass ratio was2.05 mg/g,and the optimal value of rehydration ratio was 3.95.Finally,the turnip dry products were observed by SESM and the results were analyzed.The result showed that the cell wall breakage rate,cell deformation rate,and low profile shrinkage rate of turnip dried by infrared vacuum were lower;the surface smoothness preservation rate was higher;the cell tissue preservation rate was more than 80%,and the cell breakage and distortion was less.And the microscopic morphology of cell was kept well.Under these conditions,the original organization and structure of the sample were truly reflected,the better drying effect was achieved,the sensory quality of dried products was guaranteed.This study provide a technical basis for the intelligent far-infrared vacuum drying technology applying for fast drying of high moisture materials and a reference for improving the quality of the far-infrared vacuum drying of turnip.
基金Project supported by the Key Technologies R & D Programme of Tianjin (06YFGZGX02400)
文摘Rare earth composite materials radiating far-infrared rays were prepared according to far infrared absorption spectrum of main component in liquefied petroleum gas (LPG). The composite materials were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transformed infrared spectra(FTIR). The results show that after the composite materials were calcined at 873 K for 4 h, FTIR spectra of rare earth composite materials display two new peaks at 1336 and 2926 cm-1 available for activating LPG.
基金JSPS KAKENHI,grant number JP16H05001[Grant-in-Aid for Scientific Research(B)]JP17K08015[Grant-in-Aid for Scientific Research(C)]。
文摘We incorporated a superheated steam blanching pretreatment step into a paprika drying process and compared the far-infrared(FIR)drying rates,hardness of the sample surfaces,cell membrane stabilities,and energy consumption of blanched and non-blanched paprika.The average drying rate of blanched paprika samples during FIR drying was higher than that of non-blanched samples.The hardness and cell membrane stability of dried blanched samples were lower than those of non-blanched samples.We estimated that the softening of the sample surfaces and injury to the cell membranes caused the drying rate to increase.The total energy consumption of the FIR drying of paprika was reduced by approximately 30%by introducing the blanching pretreatment.These findings contribute to the development of environmentally friendly FIR drying techniques for paprika.
基金National Natural Science Foundation of China(Nos.10475078,10675127,10675126,10675124,10605028)
文摘A single-channel far-infrared (FIR) laser interferometer was developed to measure the line averaged electron density on the EAST tokamak. The structure of the single-channel FIR laser interferometer is described in detail. The evolution of density sawtooth oscillation was measured by means the FIR laser interferometer, and was identified by electron cyclotron emission (ECE) signals and soft X-ray intensity. The discharges with and without sawtooth were compared with each other in the Hugill diagram.
文摘We report a far-infrared absorption study of internal transitions of shallow Be acceptors in both bulk GaAs and a series of δ-doped GaAs/AlAs multiple quantum well samples with well thicknesses of 20,15 and 10 nm. Low temperature far-infrared absorp-tion measurements clearly show three principal absorption lines due to transitions of Be-acceptor states from the ground state to the first three odd-parity excited states,respec-tively. Using a variational principle,the 2p-1s transition energies of quantum confined Be acceptors are calculated as a function of the well width. It is found that the theoretical calculation of the 2pz → 1s transitions is in good agreement with the D-like line experi-mental data.
文摘Far-infrared ray (FIR) is electromagnetic wave between 4 and 1000 μm. FIR causes heating, but how it affects cells is not well understood. In this study, we developed a culture incubator that can continuously irradiate cells with FIR and examined the effects of FIR on five human cancer cell lines, namely A431 (vulva), A549 (lung), HSC3 (tongue), MCF7 (breast) and Sa3 (gingiva). We found that FIR inhibits cell proliferation and induces cell hypertrophy without apoptosis in A549, HSC3 and Sa3 cells. Flow cytometry revealed that the inhibition of proliferation was due to G2/M arrest. Contrary, FIR did not inhibit cell proliferation and cause cell hypertrophy in A431 or MCF7 cells. Microarray analysis revealed that FIR suppressed the expression of cell proliferation-related and stress-responsive genes in FIR-sensitive cell lines (A549, HSC3 and Sa3). ATF3 in particular was identified as a key mediator of the FIR effect. Over-expression of ATF3 inhibited cell proliferation and knockdown of ATF3 mRNA using an antisense oligonucleotide suppressed FIR-induced growth arrest. These results indicate that a body temperature range of FIR radiation suppresses the proliferation of A549, HSC3, Sa3 cells and it appears that ATF3 play important roles in this effect.
文摘The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].
文摘In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature is around 29 K. Large Grains are in fact Bose-Einstein condensates of proposed dineutrinos, and are responsible for the cosmic Far-Infrared Background (FIRB) radiation. The distribution of the energy density of all components of the World (protons, electrons, photons, neutrinos, and dark matter particles) is considered. We present an overview of the World- Universe Model (WUM) and pay particular attention to the self-consistent set of time-varying values of basic parameters of the World: the age and critical energy density;Newtonian parameter of gravitation and Hubble’s parameter;temperatures of the cosmic Microwave Background radiation and the peak of the cosmic FIRB radiation;Fermi coupling parameter and coupling parameters of the proposed Super-Weak and Extremely-Weak interactions. Additionally, WUM forecasts the masses of dark matter particles, axions, and neutrinos;proposes two fundamental parameters of the World: fine-structure constant α and the quantity Q which is the dimensionless value of the fifth coordinate, and three fundamental physical units: basic unit of momentum, energy density, and energy flux density. WUM suggests that all time-dependent parameters of the World are inter- connected and in fact dependent on Q. We recommend adding the quantity Q to the list of the CODATA-recommended values.
基金supported by National Natural Science Foundation of China (Nos. 11375195, 11575184 and 11275059)National Magnetic Confinement Fusion Energy Development Research (Nos. 2013GB104003 and 2014GB109001)
文摘The precision of plasma electron density and Faraday rotation angle measurement is a key indicator for far-infrared laser interferometer/polarimeter plasma diagnosis. To improve the precision, a new multi-channel high signal-to-noise ratio HCOOH interferometer/polarimeter has been developed on the HL-2A tokamak. It has a higher level requirement for phase demodulation precision. This paper introduces an improved real-time fast Fourier transform algorithm based on the field programmable gate array, which significantly improves the precision. We also apply a real-time error monitoring module (REMM) and a stable error inhibiting module (SEIM) for precision control to deal with the weak signal. We test the interferometer/polarimeter system with this improved precision control method in plasma discharge experiments and simulation experiments. The experimental results confirm that the plasma electron density precision is better than 1/3600 fringe and the Faraday rotation angle measurement precision is better than 1/900 fringe, while the temporal resolution is 80 ns. This performance can fully meet the requirements of HL-2A.
基金the National Natural Science Foundation of China(Grant No.U1404334)the College Young Teachers Development Program of Henan province(Grant No.2015GGJS-048)the Science and Technology Project of Henan Province of China(Grant No.12A210005 and 14B550005)。
文摘Vacuum far-infrared radiation(VFIR)drying has recently received many attentions because of its effective and successful applications in drying some agricultural products.The VFIR drying of Radix Rehmanniae was conducted and Weibull distribution function was applied to fit the drying kinetics in this study.The results showed that the increase of radiation heater temperature and the decrease of chamber pressure could reduce drying time obviously.Compared with single diffusion equation,Weibull distribution function had higher precision to fit the drying curves of VFIR drying of Rehmanniae.The effective moisture diffusivity(Deff)increased with the increase of heater temperature and the decrease of pressure.Scanning electron telescope(SEM)analysis showed that more porous surface could be observed after VFIR drying,which is beneficial to enhance moisture diffusivity and drying rate as well.
文摘This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.
文摘In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.