The microhardness of piston rods treated with different induction hardening processes was tested. The experimental results reveal that the depth of the hardened zone is proportional to the ratio of the moving speed of...The microhardness of piston rods treated with different induction hardening processes was tested. The experimental results reveal that the depth of the hardened zone is proportional to the ratio of the moving speed of the piston rod to the output power of the induction generator. This result is proved correct through the Finite Element Method (FEM) simulation of the thermal field of induction heating. From tensile and impact tests, an optimized high frequency induction hardening process for piston rods has been obtained, where the output power was 82%×80 kW and the moving speed of workpiece was 5364 mm/min. The piston rods, treated by the optimized high frequency induction hardening process, show the best comprehensive mechanical performance.展开更多
In order to investigate and predict the material properties of curved surface AISI 1045 steel component during spot continual induction hardening(SCIH),a 3D model for curved surface workpieces which coupled electromag...In order to investigate and predict the material properties of curved surface AISI 1045 steel component during spot continual induction hardening(SCIH),a 3D model for curved surface workpieces which coupled electromagnetic,temperature and phase transformation fields was built by finite element software ANSYS.A small size inductor and magnetizer were used in this model,which can move along the top surface of workpiece flexibly.The effect of inductor moving velocity and workpiece radius on temperature field was analyzed and the heating delay phenomenon was found through comparing the simulated results.The temperature field results indicate that the heating delay phenomenon is more obvious under high inductor moving velocity condition.This trend becomes more obvious if the workpiece radius becomes larger.The predictions of microstructure and micro-hardness distribution were also carried out via this model.The predicted results show that the inductor moving velocity is the dominated factor for the distribution of 100% martensite region and phase transformation region.The influencing factor of workpiece radius on 100% martensite region and phase transformation region distribution is obvious under relatively high inductor moving velocity but inconspicuous under relatively low inductor moving velocity.展开更多
The different types of quenchants for induction hardening - mainly for shower quenching - but also for immersion will be described in regard to their properties, film-formation, remaining residues, how to handle these...The different types of quenchants for induction hardening - mainly for shower quenching - but also for immersion will be described in regard to their properties, film-formation, remaining residues, how to handle these etc.. Furtheron the maintenance of such quench fluids will be desribed in detail regarding concentration control, control of growth of micro-organism, contamination and maintenance.展开更多
Induction hardening of dense Fe–Cr/Mo alloys processed via the powder-metallurgy route was studied. The Fe-3Cr-0.5Mo, Fe-1.5Cr-0.2Mo, and Fe-0.85 Mo pre-alloyed powders were mixed with 0.4wt%, 0.6wt%, and 0.8wt% C an...Induction hardening of dense Fe–Cr/Mo alloys processed via the powder-metallurgy route was studied. The Fe-3Cr-0.5Mo, Fe-1.5Cr-0.2Mo, and Fe-0.85 Mo pre-alloyed powders were mixed with 0.4wt%, 0.6wt%, and 0.8wt% C and compacted at 500, 600, and 700 MPa, respectively. The compacts were sintered at 1473 K for 1 h and then cooled at 6 K/min. Ferrite with pearlite was mostly observed in the sintered alloys with 0.4wt% C, whereas a carbide network was also present in the alloys with 0.8wt% C. Graphite at prior particle boundaries led to deterioration of the mechanical properties of alloys with 0.8wt% C, whereas no significant induction hardening was achieved in alloys with 0.4wt% C. Among the investigated samples, alloys with 0.6wt% C exhibited the highest strength and ductility and were found to be suitable for induction hardening. The hardening was carried out at a frequency of 2.0 kHz for 2–3 s. A case depth of 2.5 mm was achieved while maintaining the bulk(interior) hardness of approximately HV 230. A martensitic structure was observed on the outer periphery of the samples. The hardness varied from HV 600 to HV 375 from the sample surface to the interior of the case hardened region. The best combination of properties and hardening depth was achieved in case of the Fe-1.5Cr-0.2Mo alloy with 0.6wt% C.展开更多
Case depth measurement of the induction hardened steel parts is necessary for quality control. Vickers microhardness test is the most industrially accepted method to identify the case depth. But this method is a time ...Case depth measurement of the induction hardened steel parts is necessary for quality control. Vickers microhardness test is the most industrially accepted method to identify the case depth. But this method is a time consuming one and it requires expensive equipment. The aim of this study is to develop a different method to determine the case depth using image processing. The surface hardened steel samples were cross cut, ground and etched with Nital. The etched macrosectioned specimens were scanned by a scanner. The scanned images were evaluated by the developed software. The principle of the software is to identify the gray level difference. The effective case depths of the surface hardened specimens obtained by Vickers microhardness test and the developed method were compared. It was found that the deviation of the developed method was ±0.12 mm at the case depth range of 0.6 - 2.0 mm and mm at the case depth range of 2.1 - 4.3 mm. The measuring time was only 20% of Vickers microhardness test. The deviation range is much lower than the tolerance case depth specification for induction hardening in general.展开更多
Rotary bending fatigue tests were carried out with two kinds of materials, S43C and S50C, using the front engine and front drive shaft (FF shaft) of vehicle. The specimens were induction hardened about 1.0mm depth f...Rotary bending fatigue tests were carried out with two kinds of materials, S43C and S50C, using the front engine and front drive shaft (FF shaft) of vehicle. The specimens were induction hardened about 1.0mm depth from the specimen surface, and the hardness value on the surface was about HRC56-60. The tested environment temperatures were -30, 25 and 80℃ in order to look over effect of the induction hardening and the environmental temperatures on the fatigue characteristics. The fatigue limit of induction hardened specimens increased more about 45% than non-hardened specimens showing that the endurances of S43C and S50C were 98.1 and 107.9MPa in non-hardened samples, 147.1 and 156.9MPa in hardened samplesrespectably. The maximum tensile and compressive stress on the small circular defect was about +250 and -450MPa respectively when circular defect is situated on top and bottom. The fatigue life increased 80, 25 and -30℃ in order regardless of hardening. In comparison of the fatigue lives on the basis of tested result at 25℃, the fatigue lives of non-hardened specimens decreased about 35%, but that of hardened specimens decreased about only 5% at 80℃ more than at 25℃. And fatigue life of non-hardened and hardened specimens were about 110% and 120% higher at -30℃ than that of 25℃. Based on the result of stress distribution near the defect, the tensile and compressive stress repeatedly generated by load direction were the largest on the small circular defect due to the stress concentration.展开更多
The influence of laser surface melting and induction hardening on the surface structure,con- tact fatigue life and failure behaviour of the nodular cast iron has been investigated.The con- tact fatigue life can be imp...The influence of laser surface melting and induction hardening on the surface structure,con- tact fatigue life and failure behaviour of the nodular cast iron has been investigated.The con- tact fatigue life can be improved by both laser treatment and induction hardening,but the fail- ure process and type are different from each other.The former is due to lumpy and deep spal- ling caused by crack propagation between the quenching zone and the substrate,and the latter is due to nubby and surface flaking caused by the oil wedged action into surface cracks.展开更多
The engineering properties of metals and alloys are related to their structures. The change in mechanical properties of the metals and alloys can be achieved by the process of heat treatment. Induction hardening is on...The engineering properties of metals and alloys are related to their structures. The change in mechanical properties of the metals and alloys can be achieved by the process of heat treatment. Induction hardening is one such a process involves phase transformation by rapid heating and cooling of the outer surface. Induction hardening improves the outer surface hardness and wear resistant properties keeping the original toughness and ductility in the inner core. However past experiences shows that during heat treatment, parts have undergone dimensional changes due to thermal fluctuations and phase transformations. Dimensional changes can lead to excessive distortion in the component which always presented difficulties to the uses of many varieties of steels which can be hardened by induction hardening. The dimensional changes in components which have been induction hardened have for a long time proved costly and troublesome to manufacturers. These difficulties apply particularly in the automotive industry where the amount of distortion in rack and pinion assembly has been related to their noise level in operation and investigators have suggested a link between distortion and the initiation of fatigue failure. [1] Although the complete elimination of distortion would be an ideal aim, manufacturers are reconciled to the fact that a certain amount of distortion is an inherent part of the hardening process. However, if the amount of distortion is uniform and predictable, an allowance could be made in the initial machining operations. It was with these aims that investigations into the control of distortion in bright bar (EN 18D steel) used in rack application (Power steering assembly) have been carried out by parameter optimization展开更多
Induction heating has been widely used by the heat treatment industry mainly in the wind-power and automotive sectors,in particular for hardening purposes,in a broad range of applications,its main advantages being the...Induction heating has been widely used by the heat treatment industry mainly in the wind-power and automotive sectors,in particular for hardening purposes,in a broad range of applications,its main advantages being the high repeatability and easy automation of the process,both factors leading to improved manufacturing efficiency and reduced CO;emissions.Though,traditional furnace-based case hardening treatments still represent the choice of reference when performance requirements are particularly demanding,either for the critical operating conditions or safety-related issues.The processes of CIH(Contour Induction Hardening),compared to the traditional carburizing processes,allows to reduce the deformations after heat treatment.The main purpose of these treatments,as well as increases the surface hardness of the piece,is to induce compressive stresses in the superficial layer,improving the fatigue behavior.A multiphysics magneto-thermal simulation can be developed in order to calculate the temperature distribution in the gear,setting the input parameters such as currents,frequencies and treatment times.展开更多
The paper deals with mathematical modeling of induction hardening of internal surfaces of steel tubes used for transportation of loose materials.First a comparison of two ways of induction surface hardening was provid...The paper deals with mathematical modeling of induction hardening of internal surfaces of steel tubes used for transportation of loose materials.First a comparison of two ways of induction surface hardening was provided.Then the coupled electromagnetic and temperature fields analysis was provided by means of single-owned packages.Quite good convergence between measurements done on especially built laboratory stand and computations was achieved.展开更多
Fatigue fracture is the major threat to the railway axle, which can be avoided or delayed by surface strengthening. In this study, a low-carbon alloy axle steel with two states was treated by surface induction hardeni...Fatigue fracture is the major threat to the railway axle, which can be avoided or delayed by surface strengthening. In this study, a low-carbon alloy axle steel with two states was treated by surface induction hardening and shot peening, respectively, to reveal the mechanism of fatigue property improvement by microstructure characterization, microhardness measurement, residual stress analysis, roughness measurement, and rotary bending fatigue tests. The results indicate that both quenching and tempering treatment can effectively improve the fatigue properties of the modified axle steel. In addition, induction hardening can create an ideal hardened layer on the sample surface by phase transformation from the microstructure of ferrite and pearlite to martensite. By comparison, shot peening can modify the microstructure in surface layer by surface severe plastic deformation introducing a large number of dislocation and even cause grain refinement. Both induction hardening and shot peening create compressive residual stress into the surface layer of axle steel sample, which can effectively reduce the stress level applied to the metal surface during the rotary bending fatigue tests. On the whole, the contribution of induction hardening to the fatigue life of axle steel sample is better than that of the shot peening, and induction hardening shows obvious advantages in improving the fatigue life of axle steel.展开更多
文摘The microhardness of piston rods treated with different induction hardening processes was tested. The experimental results reveal that the depth of the hardened zone is proportional to the ratio of the moving speed of the piston rod to the output power of the induction generator. This result is proved correct through the Finite Element Method (FEM) simulation of the thermal field of induction heating. From tensile and impact tests, an optimized high frequency induction hardening process for piston rods has been obtained, where the output power was 82%×80 kW and the moving speed of workpiece was 5364 mm/min. The piston rods, treated by the optimized high frequency induction hardening process, show the best comprehensive mechanical performance.
基金Project (51175392) supported by the National Natural Science Foundation of ChinaProject (2014BAA012) supported by the Key Project of Hubei Province Science & Technology Pillar Program,ChinaProjects (2012-IV-067,2013-VII-020) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to investigate and predict the material properties of curved surface AISI 1045 steel component during spot continual induction hardening(SCIH),a 3D model for curved surface workpieces which coupled electromagnetic,temperature and phase transformation fields was built by finite element software ANSYS.A small size inductor and magnetizer were used in this model,which can move along the top surface of workpiece flexibly.The effect of inductor moving velocity and workpiece radius on temperature field was analyzed and the heating delay phenomenon was found through comparing the simulated results.The temperature field results indicate that the heating delay phenomenon is more obvious under high inductor moving velocity condition.This trend becomes more obvious if the workpiece radius becomes larger.The predictions of microstructure and micro-hardness distribution were also carried out via this model.The predicted results show that the inductor moving velocity is the dominated factor for the distribution of 100% martensite region and phase transformation region.The influencing factor of workpiece radius on 100% martensite region and phase transformation region distribution is obvious under relatively high inductor moving velocity but inconspicuous under relatively low inductor moving velocity.
文摘The different types of quenchants for induction hardening - mainly for shower quenching - but also for immersion will be described in regard to their properties, film-formation, remaining residues, how to handle these etc.. Furtheron the maintenance of such quench fluids will be desribed in detail regarding concentration control, control of growth of micro-organism, contamination and maintenance.
基金the support of the MHRD fellowship from Government of India
文摘Induction hardening of dense Fe–Cr/Mo alloys processed via the powder-metallurgy route was studied. The Fe-3Cr-0.5Mo, Fe-1.5Cr-0.2Mo, and Fe-0.85 Mo pre-alloyed powders were mixed with 0.4wt%, 0.6wt%, and 0.8wt% C and compacted at 500, 600, and 700 MPa, respectively. The compacts were sintered at 1473 K for 1 h and then cooled at 6 K/min. Ferrite with pearlite was mostly observed in the sintered alloys with 0.4wt% C, whereas a carbide network was also present in the alloys with 0.8wt% C. Graphite at prior particle boundaries led to deterioration of the mechanical properties of alloys with 0.8wt% C, whereas no significant induction hardening was achieved in alloys with 0.4wt% C. Among the investigated samples, alloys with 0.6wt% C exhibited the highest strength and ductility and were found to be suitable for induction hardening. The hardening was carried out at a frequency of 2.0 kHz for 2–3 s. A case depth of 2.5 mm was achieved while maintaining the bulk(interior) hardness of approximately HV 230. A martensitic structure was observed on the outer periphery of the samples. The hardness varied from HV 600 to HV 375 from the sample surface to the interior of the case hardened region. The best combination of properties and hardening depth was achieved in case of the Fe-1.5Cr-0.2Mo alloy with 0.6wt% C.
文摘Case depth measurement of the induction hardened steel parts is necessary for quality control. Vickers microhardness test is the most industrially accepted method to identify the case depth. But this method is a time consuming one and it requires expensive equipment. The aim of this study is to develop a different method to determine the case depth using image processing. The surface hardened steel samples were cross cut, ground and etched with Nital. The etched macrosectioned specimens were scanned by a scanner. The scanned images were evaluated by the developed software. The principle of the software is to identify the gray level difference. The effective case depths of the surface hardened specimens obtained by Vickers microhardness test and the developed method were compared. It was found that the deviation of the developed method was ±0.12 mm at the case depth range of 0.6 - 2.0 mm and mm at the case depth range of 2.1 - 4.3 mm. The measuring time was only 20% of Vickers microhardness test. The deviation range is much lower than the tolerance case depth specification for induction hardening in general.
文摘Rotary bending fatigue tests were carried out with two kinds of materials, S43C and S50C, using the front engine and front drive shaft (FF shaft) of vehicle. The specimens were induction hardened about 1.0mm depth from the specimen surface, and the hardness value on the surface was about HRC56-60. The tested environment temperatures were -30, 25 and 80℃ in order to look over effect of the induction hardening and the environmental temperatures on the fatigue characteristics. The fatigue limit of induction hardened specimens increased more about 45% than non-hardened specimens showing that the endurances of S43C and S50C were 98.1 and 107.9MPa in non-hardened samples, 147.1 and 156.9MPa in hardened samplesrespectably. The maximum tensile and compressive stress on the small circular defect was about +250 and -450MPa respectively when circular defect is situated on top and bottom. The fatigue life increased 80, 25 and -30℃ in order regardless of hardening. In comparison of the fatigue lives on the basis of tested result at 25℃, the fatigue lives of non-hardened specimens decreased about 35%, but that of hardened specimens decreased about only 5% at 80℃ more than at 25℃. And fatigue life of non-hardened and hardened specimens were about 110% and 120% higher at -30℃ than that of 25℃. Based on the result of stress distribution near the defect, the tensile and compressive stress repeatedly generated by load direction were the largest on the small circular defect due to the stress concentration.
文摘The influence of laser surface melting and induction hardening on the surface structure,con- tact fatigue life and failure behaviour of the nodular cast iron has been investigated.The con- tact fatigue life can be improved by both laser treatment and induction hardening,but the fail- ure process and type are different from each other.The former is due to lumpy and deep spal- ling caused by crack propagation between the quenching zone and the substrate,and the latter is due to nubby and surface flaking caused by the oil wedged action into surface cracks.
文摘The engineering properties of metals and alloys are related to their structures. The change in mechanical properties of the metals and alloys can be achieved by the process of heat treatment. Induction hardening is one such a process involves phase transformation by rapid heating and cooling of the outer surface. Induction hardening improves the outer surface hardness and wear resistant properties keeping the original toughness and ductility in the inner core. However past experiences shows that during heat treatment, parts have undergone dimensional changes due to thermal fluctuations and phase transformations. Dimensional changes can lead to excessive distortion in the component which always presented difficulties to the uses of many varieties of steels which can be hardened by induction hardening. The dimensional changes in components which have been induction hardened have for a long time proved costly and troublesome to manufacturers. These difficulties apply particularly in the automotive industry where the amount of distortion in rack and pinion assembly has been related to their noise level in operation and investigators have suggested a link between distortion and the initiation of fatigue failure. [1] Although the complete elimination of distortion would be an ideal aim, manufacturers are reconciled to the fact that a certain amount of distortion is an inherent part of the hardening process. However, if the amount of distortion is uniform and predictable, an allowance could be made in the initial machining operations. It was with these aims that investigations into the control of distortion in bright bar (EN 18D steel) used in rack application (Power steering assembly) have been carried out by parameter optimization
文摘Induction heating has been widely used by the heat treatment industry mainly in the wind-power and automotive sectors,in particular for hardening purposes,in a broad range of applications,its main advantages being the high repeatability and easy automation of the process,both factors leading to improved manufacturing efficiency and reduced CO;emissions.Though,traditional furnace-based case hardening treatments still represent the choice of reference when performance requirements are particularly demanding,either for the critical operating conditions or safety-related issues.The processes of CIH(Contour Induction Hardening),compared to the traditional carburizing processes,allows to reduce the deformations after heat treatment.The main purpose of these treatments,as well as increases the surface hardness of the piece,is to induce compressive stresses in the superficial layer,improving the fatigue behavior.A multiphysics magneto-thermal simulation can be developed in order to calculate the temperature distribution in the gear,setting the input parameters such as currents,frequencies and treatment times.
基金Item sponsored by Polish Ministry of Science and Higher Education in a framework of grant project N N510 256338
文摘The paper deals with mathematical modeling of induction hardening of internal surfaces of steel tubes used for transportation of loose materials.First a comparison of two ways of induction surface hardening was provided.Then the coupled electromagnetic and temperature fields analysis was provided by means of single-owned packages.Quite good convergence between measurements done on especially built laboratory stand and computations was achieved.
基金financially supported by the National Key Research and Development Project(No.2017YFB0703004)the National Natural Science Foundation of China(NSFC,No.U1664253)the LiaoNing Revitalization Talents Program(No.XLYC1808027)。
文摘Fatigue fracture is the major threat to the railway axle, which can be avoided or delayed by surface strengthening. In this study, a low-carbon alloy axle steel with two states was treated by surface induction hardening and shot peening, respectively, to reveal the mechanism of fatigue property improvement by microstructure characterization, microhardness measurement, residual stress analysis, roughness measurement, and rotary bending fatigue tests. The results indicate that both quenching and tempering treatment can effectively improve the fatigue properties of the modified axle steel. In addition, induction hardening can create an ideal hardened layer on the sample surface by phase transformation from the microstructure of ferrite and pearlite to martensite. By comparison, shot peening can modify the microstructure in surface layer by surface severe plastic deformation introducing a large number of dislocation and even cause grain refinement. Both induction hardening and shot peening create compressive residual stress into the surface layer of axle steel sample, which can effectively reduce the stress level applied to the metal surface during the rotary bending fatigue tests. On the whole, the contribution of induction hardening to the fatigue life of axle steel sample is better than that of the shot peening, and induction hardening shows obvious advantages in improving the fatigue life of axle steel.