The instrumental records of precipitation, including some historical documentary evidence, show that the rainfall in North China during the rainy season (July and August) exhibits an interdecadal variability similar t...The instrumental records of precipitation, including some historical documentary evidence, show that the rainfall in North China during the rainy season (July and August) exhibits an interdecadal variability similar to the Sahelian rainfall. Both these areas exhibited a weak interdecadal rainfall variability prior to the 1950s, and experienced a long-lasting drought since the 1960s, with two rainfall decreasing transitions, one around the year 1965 and another in the late 1970s. NCEP/NCAR reanalysis data are used to analyze the associated changes in atmospheric circulation during the second decrease transition. The changes of local atmospheric circulation at the end of the 1970s, at both lower and upper levels, contribute to the less precipitation in North China and the Sahel.展开更多
The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45~N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced...The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45~N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced westerly to the north of the EAJS's axis (type A), while the second type is related to the weakened westerly within the EAJS's axis (type B). In this study, the impacts of these two types of northward jumps on rainfall in eastern China are investigated. Our results show that rainfall significantly increases in northern Northeast China and decreases in the Yellow River-Huaihe River valleys, as well as in North China, during the type A jump. As a result of the type B jump, rainfall is enhanced in North China and suppressed in the Yangtze River valley. The changes in rainfall in eastern China during these two types of northward jumps are mainly caused by the northward shifts of the ascending air flow that is directly related to the EAJS. Concurrent with the type A (B) jump, the EAJS-related ascending branch moves from the Yangtze-Huai River valley to northern Northeast (North) China when the EAJS's axis jumps from 40~N to 55~N (50~N). Meanwhile, the type A jump also strengthens the Northeast Asian low in the lower troposphere, leading to more moisture transport to northern Northeast China. The type B jump, however, induces a northwestward extension of the lower-tropospheric western North Pacific subtropical high and more moisture transport to North China.展开更多
Summer rainfall variations in North China closely relate to that in India. It seems that an alternation of signs of“+, -, +” exists in the geographical pattern of the correlation in summer rainfall from North Chin...Summer rainfall variations in North China closely relate to that in India. It seems that an alternation of signs of“+, -, +” exists in the geographical pattern of the correlation in summer rainfall from North China to India through the Tibetan Plateau. However, it appears that the teleconnection of summer rainfall variations between North China and India is unstable. Over 1945 - 1974, the correlation coefficient (hereafter as CC) is as large as 0.7. In contrast, the CC is about -0.3 over 1827-1856. Further studies, based on observations starting from 1813, showed that the correlation is strong when summer rainfalls in both North China and India are large, and vice versa. In order to find what induce the change of the teleconnection, variations of summer rainfall in both North China and India, mean sea surface temperature (SST) in the eastern equatorial Pacific and the frequency of ENSO events were examined in relation to the change of the teleconnection. The result showed that the teleconnection appears weak when the mean SST is high and the frequency ofLa Nifia events is low; the teleconnection is strong when the mean SST is low and the frequency ofLa Nina events is high. At last, it is notable that La Nifia happens in only 3 years during the recent 30 years from 1976 to 2005 and the teleconnection becomes weak too.展开更多
Simulated rainfall is a valid tool to examine the runoff generation on the slope.13 simulated rainfall experiments with different rainfall intensities and durations are completed in a 5 m ×10 m experimental plot ...Simulated rainfall is a valid tool to examine the runoff generation on the slope.13 simulated rainfall experiments with different rainfall intensities and durations are completed in a 5 m ×10 m experimental plot in mountainous area of North China.Simultaneously,rainfall,surface runoff,soil-layer flow,mantel-layer flow and soil moisture are monitored respectively.From the results,it is found that the hydrographs in all layers have the characteristics of rapid rise and fall.The recessions of surface flow and soil-layer flow are much faster than that of mantel-layer flow.Surface flow,the main contributor,makes up more than 60% of the total runoff in the study area.It even exceeds 90% in the cases of high intensity rainfall events.Runoff coefficient(ratio of total runoff to rainfall amount) is mainly influenced by rainfall amount,rainfall intensity and antecedent soil moisture,and the relationship can be well expressed by a multiple linear regression function α = 0.002P + 0.182i + 4.88Wa-0.821.The relation between the rainfall intensity and the lag time of three flows(surface runoff,soil-layer flow and mantel-layer flow) is shown to be exponential.Then,the result also shows that the recession constant is 0.75 for surface runoff,is 0.94 for soil-layer and mantel-layer flow in this area.In this study area,the dominant infiltration excess runoff is simulated by Horton model.About 0.10 mm/min percolation is observed under the condition of different rainfall intensities,therefore the value is regarded as the steady infiltration rate of the study area.展开更多
ENSO's effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the E1 Nifio peak, the...ENSO's effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the E1 Nifio peak, the precipitation is significantly enhanced in the Yangtze River valley while suppressed in the Huaihe River-Yellow River valleys. This relationship between ENSO and the rainfall in eastern China is established possibly through two teleconnections: One is related to the western North Pacific (WNP) anticyclonic anomaly in the lower troposphere leading to enhanced precipitation in the Yangtze River valley, and the other is related to the southward displacement of the Asian jet stream (AJS) in the upper troposphere resulting in suppressed precipitation in the Huaihe River-Yellow River valleys. This southward displacement of the AJS is one part of ENSO's effect on the zonal flow in the whole Northern Hemisphere. After the E1 Nifio peak, the ENSO-related warming in the tropical troposphere persists into the following early summer, increasing the meridional temperature gradient and through the thermal wind balance, leads to the enhancement of westerly flow in the subtropics south of the westerly jet stream and results in a southward displacement of the westerly jet stream.展开更多
The second EOF(EOF2) mode of interannual variation in summer rainfall over East China is characterized by inverse rainfall changes between South China(SC) and the Yellow River-Huaihe River valleys(YH).However,un...The second EOF(EOF2) mode of interannual variation in summer rainfall over East China is characterized by inverse rainfall changes between South China(SC) and the Yellow River-Huaihe River valleys(YH).However,understanding of the EOF2 mode is still limited.In this study,the authors identify that the EOF2 mode physically depicts the latitudinal variation of the climatological summer-mean rainy belt along the Yangtze River valley(YRRB),based on a 160-station rainfall dataset in China for the period 1951-2011.The latitudinal variation of the YRRB is mostly attributed to two different rainfall patterns:one reflects the seesaw(SS) rainfall changes between the YH and SC(SS pattern),and the other features rainfall anomalies concentrated in SC only(SC pattern).Corresponding to a southward shift of the YRRB,the SS pattern,with above-normal rainfall in SC and below-normal rainfall in the YH,is related to a cyclonic anomaly centered over the SC-East China Sea region,with a northerly anomaly blowing from the YH to SC;while the SC pattern,with above-normal rainfall in SC,is related to an anticyclonic anomaly over the western North Pacific(WNP),corresponding to an enhanced southwest monsoon over SC.The cyclonic anomaly,related to the SS pattern,is induced by a near-barotropic eastward propagating wave train along the Asian upper-tropospheric westerly jet,originating from the mid-high latitudes of the North Atlantic.The anticyclonic anomaly,for the SC pattern,is related to suppressed rainfall in the WNP.展开更多
This study examined the rainfall characteristics and related synoptic processes of two extreme rainfall events that affected North China during 29 July–1 August 2023(“23·7”rainstorm)and 3–5 August 1996(“96...This study examined the rainfall characteristics and related synoptic processes of two extreme rainfall events that affected North China during 29 July–1 August 2023(“23·7”rainstorm)and 3–5 August 1996(“96·8”rainstorm),respectively.A stable dual-typhoon circulation pattern was observed in both rainstorm events.The surviving vortex of a landed typhoon,slowly approaching the rainstorm region,was blocked by a high-pressure system as it moved northwestward.Meanwhile,the second typhoon over the western Pacific Ocean facilitated remote northward transport of moisture.The low-level jet between the surviving vortex and the western Pacific subtropical high relayed moist warm air from the area of the South China Sea and western Pacific into the rainstorm region.Although the circulation patterns are similar,the stratification conditions,driving factors,and moisture budget of the two rainstorms differed during the main period of rainfall.The“23·7”rainstorm was categorized as warm-sector rainfall,as a result of the lifting of warm moist air over the eastern foothills of Taihang Mountains.In comparison with the situation of the“96·8”rainstorm,the surviving vortex of the“23·7”rainstorm traveled further northeastward and directly impacted the occurrence and progression of the rainfall,leading to relative northward displacement of the rainfall center,while the stronger net inward moisture flux caused greater regional average rainfall.The“96·8”rainstorm was broadly analogous to precipitation of a cold front,and the rainfall center was observed in the convergence area of warm and cold air masses before the mountains;the surviving vortex did not exert direct impact on the rainfall;and the more unstable stratification led to stronger hourly rainfall.The results derived through comparison of the two rainstorms could serve as valuable scientific reference for operational forecasting of heavy rainfall under similar environmental conditions over North China.展开更多
The monthly mean geostrophic wind fields for January during 1951 - 1990 period are calculated by using data of500 hpa monthly mean height. The relation between Asia jetstream in winter and the important seasonal preci...The monthly mean geostrophic wind fields for January during 1951 - 1990 period are calculated by using data of500 hpa monthly mean height. The relation between Asia jetstream in winter and the important seasonal precipitationin East China is analysed. The analysis shows that the south branch of jetstream is stronger (weaker) in winter, therainfall will be more (less) than normal in the subsequent spring in South China, and summer rainfall in North Chinawill be more (less). too; these important rainy seasons are related to each other; the indian summer monsoon is notonly related to the summer rainfall in North China, but also related to the spring rainfall in South China and thesouth branch of jetstream in winter.展开更多
This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC)....This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.展开更多
Interdecadal and interannual timescales are dominant in the North China rainfall in rainy season (July and August). On the interdecadal timescale, the North China rainfall exhibited an abrupt decrease at the end of 19...Interdecadal and interannual timescales are dominant in the North China rainfall in rainy season (July and August). On the interdecadal timescale, the North China rainfall exhibited an abrupt decrease at the end of 1970s. In this study, we examined the effect of this abrupt rainfall decrease on the association between rainfall and circulation on the interannual timescale, and found that the interdecadal variation does not change the physical mechanism responsible for the interannual variation of North China rainfall. There is a linear relationship between the interdecadal and interannual variabilities of North China rainfall in rainy season.展开更多
The rainfall in North China during rainy sea-son (July and August (JA)) exhibits a strong interannual variability. In this study, the atmospheric circulation and SST anomalies associated with the interannual variation...The rainfall in North China during rainy sea-son (July and August (JA)) exhibits a strong interannual variability. In this study, the atmospheric circulation and SST anomalies associated with the interannual variation of JA North China rainfall are examined. It is found that on the interannual timescale, the JA North China rainfall is associ-ated with significant SST anomalies in the equatorial eastern Pacific, and the North China rainfall and SST anomaly in the equatorial eastern Pacific correspond to the similar variation of the upper-level westerly jet stream over East Asia. A pos-sible mechanism is proposed for the influence of the SST anomalies in the equatorial eastern Pacific on the North China rainfall.展开更多
基金funded by the National Natural Science Foundation of China[grant number 42105063]the Youth Training Project of the Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions[project number CAMT-202302]a funded project of Hengyang Normal University[project number 2022QD11].
文摘The instrumental records of precipitation, including some historical documentary evidence, show that the rainfall in North China during the rainy season (July and August) exhibits an interdecadal variability similar to the Sahelian rainfall. Both these areas exhibited a weak interdecadal rainfall variability prior to the 1950s, and experienced a long-lasting drought since the 1960s, with two rainfall decreasing transitions, one around the year 1965 and another in the late 1970s. NCEP/NCAR reanalysis data are used to analyze the associated changes in atmospheric circulation during the second decrease transition. The changes of local atmospheric circulation at the end of the 1970s, at both lower and upper levels, contribute to the less precipitation in North China and the Sahel.
基金supported by the National Natural Science Foundation of China (Grant No. 40905025)GYHY201006019, and GYHY200906017
文摘The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45~N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced westerly to the north of the EAJS's axis (type A), while the second type is related to the weakened westerly within the EAJS's axis (type B). In this study, the impacts of these two types of northward jumps on rainfall in eastern China are investigated. Our results show that rainfall significantly increases in northern Northeast China and decreases in the Yellow River-Huaihe River valleys, as well as in North China, during the type A jump. As a result of the type B jump, rainfall is enhanced in North China and suppressed in the Yangtze River valley. The changes in rainfall in eastern China during these two types of northward jumps are mainly caused by the northward shifts of the ascending air flow that is directly related to the EAJS. Concurrent with the type A (B) jump, the EAJS-related ascending branch moves from the Yangtze-Huai River valley to northern Northeast (North) China when the EAJS's axis jumps from 40~N to 55~N (50~N). Meanwhile, the type A jump also strengthens the Northeast Asian low in the lower troposphere, leading to more moisture transport to northern Northeast China. The type B jump, however, induces a northwestward extension of the lower-tropospheric western North Pacific subtropical high and more moisture transport to North China.
基金Diagnosis and simulation of decadal variability of East Asian summer monsoon and summerprecipitation in Eastern China (40331010)
文摘Summer rainfall variations in North China closely relate to that in India. It seems that an alternation of signs of“+, -, +” exists in the geographical pattern of the correlation in summer rainfall from North China to India through the Tibetan Plateau. However, it appears that the teleconnection of summer rainfall variations between North China and India is unstable. Over 1945 - 1974, the correlation coefficient (hereafter as CC) is as large as 0.7. In contrast, the CC is about -0.3 over 1827-1856. Further studies, based on observations starting from 1813, showed that the correlation is strong when summer rainfalls in both North China and India are large, and vice versa. In order to find what induce the change of the teleconnection, variations of summer rainfall in both North China and India, mean sea surface temperature (SST) in the eastern equatorial Pacific and the frequency of ENSO events were examined in relation to the change of the teleconnection. The result showed that the teleconnection appears weak when the mean SST is high and the frequency ofLa Nifia events is low; the teleconnection is strong when the mean SST is low and the frequency ofLa Nina events is high. At last, it is notable that La Nifia happens in only 3 years during the recent 30 years from 1976 to 2005 and the teleconnection becomes weak too.
基金National Natural Science Foundation of China,No.40371025
文摘Simulated rainfall is a valid tool to examine the runoff generation on the slope.13 simulated rainfall experiments with different rainfall intensities and durations are completed in a 5 m ×10 m experimental plot in mountainous area of North China.Simultaneously,rainfall,surface runoff,soil-layer flow,mantel-layer flow and soil moisture are monitored respectively.From the results,it is found that the hydrographs in all layers have the characteristics of rapid rise and fall.The recessions of surface flow and soil-layer flow are much faster than that of mantel-layer flow.Surface flow,the main contributor,makes up more than 60% of the total runoff in the study area.It even exceeds 90% in the cases of high intensity rainfall events.Runoff coefficient(ratio of total runoff to rainfall amount) is mainly influenced by rainfall amount,rainfall intensity and antecedent soil moisture,and the relationship can be well expressed by a multiple linear regression function α = 0.002P + 0.182i + 4.88Wa-0.821.The relation between the rainfall intensity and the lag time of three flows(surface runoff,soil-layer flow and mantel-layer flow) is shown to be exponential.Then,the result also shows that the recession constant is 0.75 for surface runoff,is 0.94 for soil-layer and mantel-layer flow in this area.In this study area,the dominant infiltration excess runoff is simulated by Horton model.About 0.10 mm/min percolation is observed under the condition of different rainfall intensities,therefore the value is regarded as the steady infiltration rate of the study area.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40725016 and 40221503).
文摘ENSO's effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the E1 Nifio peak, the precipitation is significantly enhanced in the Yangtze River valley while suppressed in the Huaihe River-Yellow River valleys. This relationship between ENSO and the rainfall in eastern China is established possibly through two teleconnections: One is related to the western North Pacific (WNP) anticyclonic anomaly in the lower troposphere leading to enhanced precipitation in the Yangtze River valley, and the other is related to the southward displacement of the Asian jet stream (AJS) in the upper troposphere resulting in suppressed precipitation in the Huaihe River-Yellow River valleys. This southward displacement of the AJS is one part of ENSO's effect on the zonal flow in the whole Northern Hemisphere. After the E1 Nifio peak, the ENSO-related warming in the tropical troposphere persists into the following early summer, increasing the meridional temperature gradient and through the thermal wind balance, leads to the enhancement of westerly flow in the subtropics south of the westerly jet stream and results in a southward displacement of the westerly jet stream.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41375086 and 41320104007)
文摘The second EOF(EOF2) mode of interannual variation in summer rainfall over East China is characterized by inverse rainfall changes between South China(SC) and the Yellow River-Huaihe River valleys(YH).However,understanding of the EOF2 mode is still limited.In this study,the authors identify that the EOF2 mode physically depicts the latitudinal variation of the climatological summer-mean rainy belt along the Yangtze River valley(YRRB),based on a 160-station rainfall dataset in China for the period 1951-2011.The latitudinal variation of the YRRB is mostly attributed to two different rainfall patterns:one reflects the seesaw(SS) rainfall changes between the YH and SC(SS pattern),and the other features rainfall anomalies concentrated in SC only(SC pattern).Corresponding to a southward shift of the YRRB,the SS pattern,with above-normal rainfall in SC and below-normal rainfall in the YH,is related to a cyclonic anomaly centered over the SC-East China Sea region,with a northerly anomaly blowing from the YH to SC;while the SC pattern,with above-normal rainfall in SC,is related to an anticyclonic anomaly over the western North Pacific(WNP),corresponding to an enhanced southwest monsoon over SC.The cyclonic anomaly,related to the SS pattern,is induced by a near-barotropic eastward propagating wave train along the Asian upper-tropospheric westerly jet,originating from the mid-high latitudes of the North Atlantic.The anticyclonic anomaly,for the SC pattern,is related to suppressed rainfall in the WNP.
基金Supported by the National Key Research and Development Program of China(2022YFC3003903)National Natural Science Foundation of China(42030610)+1 种基金Basic Research Fund of Chinese Academy of Meteorological Sciences(2023Z001 and 2023Z020)Development Fund of Chinese Academy of Meteorological Sciences(2023KJ026)。
文摘This study examined the rainfall characteristics and related synoptic processes of two extreme rainfall events that affected North China during 29 July–1 August 2023(“23·7”rainstorm)and 3–5 August 1996(“96·8”rainstorm),respectively.A stable dual-typhoon circulation pattern was observed in both rainstorm events.The surviving vortex of a landed typhoon,slowly approaching the rainstorm region,was blocked by a high-pressure system as it moved northwestward.Meanwhile,the second typhoon over the western Pacific Ocean facilitated remote northward transport of moisture.The low-level jet between the surviving vortex and the western Pacific subtropical high relayed moist warm air from the area of the South China Sea and western Pacific into the rainstorm region.Although the circulation patterns are similar,the stratification conditions,driving factors,and moisture budget of the two rainstorms differed during the main period of rainfall.The“23·7”rainstorm was categorized as warm-sector rainfall,as a result of the lifting of warm moist air over the eastern foothills of Taihang Mountains.In comparison with the situation of the“96·8”rainstorm,the surviving vortex of the“23·7”rainstorm traveled further northeastward and directly impacted the occurrence and progression of the rainfall,leading to relative northward displacement of the rainfall center,while the stronger net inward moisture flux caused greater regional average rainfall.The“96·8”rainstorm was broadly analogous to precipitation of a cold front,and the rainfall center was observed in the convergence area of warm and cold air masses before the mountains;the surviving vortex did not exert direct impact on the rainfall;and the more unstable stratification led to stronger hourly rainfall.The results derived through comparison of the two rainstorms could serve as valuable scientific reference for operational forecasting of heavy rainfall under similar environmental conditions over North China.
文摘The monthly mean geostrophic wind fields for January during 1951 - 1990 period are calculated by using data of500 hpa monthly mean height. The relation between Asia jetstream in winter and the important seasonal precipitationin East China is analysed. The analysis shows that the south branch of jetstream is stronger (weaker) in winter, therainfall will be more (less) than normal in the subsequent spring in South China, and summer rainfall in North Chinawill be more (less). too; these important rainy seasons are related to each other; the indian summer monsoon is notonly related to the summer rainfall in North China, but also related to the spring rainfall in South China and thesouth branch of jetstream in winter.
基金supported by the National Key Project for Basic Science Development (Grant No. 2015CB453203)the National Key Research and Development Program (Grant No. 2016YFA0600602)the National Natural Science Foundation of China (Grant No. 41661144017)
文摘This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.
基金supported by the Key Project of the Chinese Academy of Sciences(Grant No.KZCX2-203)the National Natural Science Foundation of China(Grant Nos.40075016 and 40023001).
文摘Interdecadal and interannual timescales are dominant in the North China rainfall in rainy season (July and August). On the interdecadal timescale, the North China rainfall exhibited an abrupt decrease at the end of 1970s. In this study, we examined the effect of this abrupt rainfall decrease on the association between rainfall and circulation on the interannual timescale, and found that the interdecadal variation does not change the physical mechanism responsible for the interannual variation of North China rainfall. There is a linear relationship between the interdecadal and interannual variabilities of North China rainfall in rainy season.
基金supported by the Chinese Acad-emy of Sciences(Grant Nos.KZCX3-SW-221 and KZCX3-SW-218)the National Natural Science Foundation of China(Grant No.40221503).
文摘The rainfall in North China during rainy sea-son (July and August (JA)) exhibits a strong interannual variability. In this study, the atmospheric circulation and SST anomalies associated with the interannual variation of JA North China rainfall are examined. It is found that on the interannual timescale, the JA North China rainfall is associ-ated with significant SST anomalies in the equatorial eastern Pacific, and the North China rainfall and SST anomaly in the equatorial eastern Pacific correspond to the similar variation of the upper-level westerly jet stream over East Asia. A pos-sible mechanism is proposed for the influence of the SST anomalies in the equatorial eastern Pacific on the North China rainfall.