The natural gas in several gas fields in Pakistan is associated with varying percentages of inert gases(e.g.,CO;, N;, and H;S). The heating capacity of such natural gas is measured in British thermal units(BTU) in...The natural gas in several gas fields in Pakistan is associated with varying percentages of inert gases(e.g.,CO;, N;, and H;S). The heating capacity of such natural gas is measured in British thermal units(BTU) in Pakistan and is based on the combustion of the natural gases. The study area of this work belongs to the Middle Indus Basin, which also covers some parts of the Sulaiman Foldbelt and the Punjab Platform.Petroleum wells drilled in the study area contain inert gases(mostly CO;and N;) in varying percentages,which decreases the BTU value of sweet gases and the economic value of the gas reserves.Attempts were made to analyze the varying compositions of inert gases(mostly CO;and N;) along the deep-seated basement faults in the Zindapir Anticlinorium, eastern Sulaiman Foldbelt, but no specific relation could be established. Similarly, geothermal gradient zones were identified and the distribution of inert gases in these zones was studied, but even so, no well-established relation could be tracked.However, variations in the amounts of inert gases in the Chiltan Limestone of the Rodho Structure and the Afiband Structure point to the generation of in situ inert gases because both wells were drilled on the same anticlinorium and share the same geology, and possibly, the same source rock. Post-accumulation changes probably play an important role in the generation of in situ inert gases in varying concentrations.H;S is also present in some parts of the Indus Basin. Therefore, a brief discussion about the possible origin of the H;S is also included in this paper.展开更多
Fort Munro Formation represents the products of the Upper Cretaceous (Maastrichtian) in the middle and lower Indus basins. The formation is exposed in the Rakhi Nala (Sulaiman Range), Bara Nala (Lakhi Range) and Naka ...Fort Munro Formation represents the products of the Upper Cretaceous (Maastrichtian) in the middle and lower Indus basins. The formation is exposed in the Rakhi Nala (Sulaiman Range), Bara Nala (Lakhi Range) and Naka Pabni (Southern Pab Range) areas. Major and trace elemental geochemistry and petrographic studies of the formation have been carried out to understand the facies trends in the middle and lower Indus basins. A high amount of acid-insoluble fraction, Ca/Mg and Mg vs. Ca/Sr ratio reveal that the formation was deposited in a shallow marine regressive environment. High amounts of clastic reflect abundant influx of terrigenous materials from the east (Indian craton) and west (Bibai volcanic). High Sr content indicates that aragonite was the precursor mineral, which was transformed into stable low-Mg calcite during diagenesis. Enrichment of Cu and Zn contents in the samples of the formation implies the influence of volcanic activity and that they were incorporated into the calcite lattice in the late phase.展开更多
文摘The natural gas in several gas fields in Pakistan is associated with varying percentages of inert gases(e.g.,CO;, N;, and H;S). The heating capacity of such natural gas is measured in British thermal units(BTU) in Pakistan and is based on the combustion of the natural gases. The study area of this work belongs to the Middle Indus Basin, which also covers some parts of the Sulaiman Foldbelt and the Punjab Platform.Petroleum wells drilled in the study area contain inert gases(mostly CO;and N;) in varying percentages,which decreases the BTU value of sweet gases and the economic value of the gas reserves.Attempts were made to analyze the varying compositions of inert gases(mostly CO;and N;) along the deep-seated basement faults in the Zindapir Anticlinorium, eastern Sulaiman Foldbelt, but no specific relation could be established. Similarly, geothermal gradient zones were identified and the distribution of inert gases in these zones was studied, but even so, no well-established relation could be tracked.However, variations in the amounts of inert gases in the Chiltan Limestone of the Rodho Structure and the Afiband Structure point to the generation of in situ inert gases because both wells were drilled on the same anticlinorium and share the same geology, and possibly, the same source rock. Post-accumulation changes probably play an important role in the generation of in situ inert gases in varying concentrations.H;S is also present in some parts of the Indus Basin. Therefore, a brief discussion about the possible origin of the H;S is also included in this paper.
文摘Fort Munro Formation represents the products of the Upper Cretaceous (Maastrichtian) in the middle and lower Indus basins. The formation is exposed in the Rakhi Nala (Sulaiman Range), Bara Nala (Lakhi Range) and Naka Pabni (Southern Pab Range) areas. Major and trace elemental geochemistry and petrographic studies of the formation have been carried out to understand the facies trends in the middle and lower Indus basins. A high amount of acid-insoluble fraction, Ca/Mg and Mg vs. Ca/Sr ratio reveal that the formation was deposited in a shallow marine regressive environment. High amounts of clastic reflect abundant influx of terrigenous materials from the east (Indian craton) and west (Bibai volcanic). High Sr content indicates that aragonite was the precursor mineral, which was transformed into stable low-Mg calcite during diagenesis. Enrichment of Cu and Zn contents in the samples of the formation implies the influence of volcanic activity and that they were incorporated into the calcite lattice in the late phase.