Sediment discharge from the Yellow River originates mainly from the drainage area between Hekouzhen and Longmen, i.e., the Helong area. Spatial-temporal variations of the vegetation cover in this area during the 1981-...Sediment discharge from the Yellow River originates mainly from the drainage area between Hekouzhen and Longmen, i.e., the Helong area. Spatial-temporal variations of the vegetation cover in this area during the 1981-2007 period have been investigated using GIMMS and SPOT VGT NDVI data. We have also analyzed the interannual variations in vegetation cover and changes in annual runoff and sediment discharge, the consequences from precipitation change and the Grain for Green Project (GGP). The results show that vegetation cover of the Helong area has increased during the 1981-2007 period. The northwestern part the Helong area, where the flat sandy lands are covered by grass, has experienced the largest increase. The region where the vegetation cover has declined is largely found in the southern and southeastern Helong area, which is a gullied hilly area or forested. Although precipitation was relatively low during the 1999-2007 period, the vegetation cover showed a significant increase in the Helong area, due to the implementation of the GGP. During this period, the most significant improvement in the vegetation cover occurred mainly in the gullied hilly areas of the Loess Plateau, such as the drainage basins of the Kuyehe and Tuweihe rivers and the middle and lower reaches of the Wudinghe and Yanhe rivers. A comparison of the average annual maximum NDVI between the earlier (1998-2002) stage and the next five years (2003-2007) of the GGP indicates that the areas with increases of 10% and 20% in NDVI account for 72.5% and 36.4% of the total area, respectively. Interannual variation of annual runoff and sediment discharge shows a declining trend, especially since the 1980s, when the decrease became very obvious. Compared with the 1950-1969 period, the average runoff during the 1980-2007 period was reduced by 34.8 × 10^8 m3 and the sediment discharge by 6.4 ×10^8 t, accounting for 49.4% and 64.9% of that in the 1950-1969 period, respectively. There is a positive correlation between the annual maximum NDVI and annual runoff and sediment discharge. This correlation was reversed since the implementation of the GGP in 1999 and vegetation cover in the He- long area has increased, associated with the decrease in runoff and sediment discharge. Less precipitation has been an important fac- tor driving the decrease in runoff and sediment discharge during 1999 2007. However, restoration and improvement of the vegetation cover may also have played a significant role in accelerating the decrease in annual runoff and sediment discharge by enhancing evapotranspiration and alleviating soil erosion.展开更多
The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment i...The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment is determined determined on the concept of net increase of sediment yield by using analytical method of sediment formation at different positions in the catchment The result shows that sediments in a small catchment in the middle reaches of the Yellow River mainly come from slopes. ms paper indicated that the sediment sources from slopes are roughly 55, 60, 78 and 85 % of the total sediment yield of a small catchment in Yangdaogou. Wangjiagou. Jiuyuangou and Nanxiaohegou, respectively, due to impacts of varying degress from slope runoff.展开更多
This paper researches and analyses the critical envirormental situation in the Middle Reaches of the Yellow River and compiles the map of critical environmental situation of this area (1:2,000,000). Five types of envi...This paper researches and analyses the critical envirormental situation in the Middle Reaches of the Yellow River and compiles the map of critical environmental situation of this area (1:2,000,000). Five types of environmental situation (ES) are divided, namely, conflict ES, critical ES, crisis ES, disastrous ES and accidental ES and 7 groups of main factors are used to identify and classify the critical environmental situation after considering the speciality of this region and the law of guiding factors. They are pollution, endemic disease, soil erosion, drought and water-shortage, forest degeration, wind-erosion and desertification, and soil salinization. Based on mapping and analysis, the paper also concludes the regional distribution law of critical environmental situation of this region and divides it into 8 small districts through combining the critical envirormental situation, regional distribution law and guiding factors. This can provide scientific basis and reference for preserving and renovating the environments with different fragile types and fragile levels.展开更多
The sediment sequence analysis of Mann-Kendall method based on major rivers of 10 hydrological station in the middle reaches of the Yellow River*[1]*t,.The results show that:The main rivers in the middle reaches of th...The sediment sequence analysis of Mann-Kendall method based on major rivers of 10 hydrological station in the middle reaches of the Yellow River*[1]*t,.The results show that:The main rivers in the middle reaches of the Yellow River hydrologic station sediment overall showed a trend of decreased significantly.Sediment discharge of all stations except Gao Jiachuan station have reached the maximum in 1956-1969s[2_3].Among various hydrologic station sediment discharge of inter-generational are generally shows the tendency of reducing year by year.Calculate the sediment transport of major river basin of Yellow River,which average is 0.63.展开更多
The middle reaches of the Yellow River represent an important area for the protection and development of the Yellow River Basin.Most of the area of the river basin is within the Loess Plateau,which establishes it as a...The middle reaches of the Yellow River represent an important area for the protection and development of the Yellow River Basin.Most of the area of the river basin is within the Loess Plateau,which establishes it as a fragile ecological environment.Firstly,using high-resolution data of land use in the watershed from the past 30 years,landscape ecological risk(LER)sample units are defined and an ecological risk index(ERI)model is constructed.Kriging interpolation is used to display the LER spatial patterns,and the temporal and spatial evolution of risk is examined.Secondly,the spatial evolution of land use landscape change(LULC)is analyzed,and the correlation between land use landscape and ecological risk is discussed.Finally,Based on the LER model,a risk-based minimum cumulative resistance(MCR)model is established,and a comprehensive protection and management network system for the ecological source-corridor-node system designed.The results suggest that in the past 30 years,LER has a high spatial correlation and areas with extremely high ecological risks are concentrated in northwest and southeast areas of the region,of which the northwest area accounts for the highest proportion.Risk intensity is closely related to the spatial pattern of land use landscape.ERI values of forestland,grasslands,and unused land and farmland are low,medium,and high,respectively.The trend of risk evolution is“overall improvement and partial deterioration”.Man-made construction and exploitation is the most direct reason for the increase of local ecological risks.The high ecological-risk areas in the northwest are dominated by deserts which reduce excessive interference by human activities on the natural landscape.Recommendations are:high-quality farmland should be protected;forestland should be restored and rebuilt;repair and adjust the existing ecosystem to assist in landscape regeneration and reconstruction;utilize the overall planning vision of“mountain,water,forest,field,lake,grass,sand”to design a management project at the basin scale;adhere to problem-oriented and precise policy implementation.展开更多
In order to study the infiltration characteristics of grassland soil in the super large scale landslides distribution area in the upper reaches of the Yellow River,this study selected the Xiazangtan super large scale ...In order to study the infiltration characteristics of grassland soil in the super large scale landslides distribution area in the upper reaches of the Yellow River,this study selected the Xiazangtan super large scale distribution area in Jianzha County as the study area.Through experiments and numerical simulations,plant roots characteristics,soil physical properties and infiltration characteristics of naturally grazed grassland and enclosed grassland with different slope directions were compared and analyzed,and the influence of rainfall on seepage field and stability of the two grassland slopes were discussed.The results show that the highest soil moisture infiltration capacity(FIR)is found on the shady slope of the enclosed grassland(2.25),followed by the sunny slope of the enclosed grassland(1.23)and the shady slope of the naturally grazed grassland(-0.87).Correlation analysis show that soil water content,root dry weight density,total soil porosity,number of forks and root length are positively correlated with infiltration rate(P<0.05),whereas soil dry density is negatively correlated with infiltration rate(P<0.05).The results of stepwise regression analyses show that soil water content,total soil porosity,root length and number of forks are the main factors affecting soil infiltration capacity.And the ability of roots to increase soil infiltration by improving soil properties is higher than the effect of roots itself.After 60 min of simulated rainfall,the safety factors of the shady slopes of naturally grazed grassland and enclosed grassland are reduced by 29.56%and 19.63%,respectively,comparing to those before rainfall.Therefore,in this study,the roots play a crucial role in regulating soil infiltration and enhance slope stability by increasing soil water content,soil total porosity and shear strength while decreasing soil dry density.The results of this study provide theoretical evidence and practical guidance for the effective prevention and control of secondary geological disasters such as soil erosion and shallow landslide on the slope of river banks in the study area by using plant ecological measures.展开更多
Based on the long-term precipitation series with annual time resolution in the middle and lower reaches of the Yellow River and its four sub-regions during 1736-2000 reconstructed from the rainfall and snowfall archiv...Based on the long-term precipitation series with annual time resolution in the middle and lower reaches of the Yellow River and its four sub-regions during 1736-2000 reconstructed from the rainfall and snowfall archives of the Qing Dynasty, the precipitation cycles are analyzed by wavelet analysis and the possible climate forcings, which drive the precipitation changes, are explored. The results show that: the precipitation in the middle and lower reaches of the Yellow River has inter-annual and inter-decadal oscillations like 2-4a, quasi-22a and 70-80a. The 2-4a cycle is linked with El Nino events, and the precipitation is lower than normal year in the occurrence of the El Nino year or the next year; for the quasi-22a and the 70-80a cycles, Wolf Sun Spot Numbers and Pacific Decadal Oscillation (PDO) coincide with the two cycle signals. However, on a 70-80a time scale, the coincidence between solar activity and precipitation is identified before 1830, and strong (weak) solar activity is generally correlated to the dry (wet) periods; after 1830, the solar activity changes to 80-100a quasi-century long oscillation, and the adjusting action to the precipitation is becoming weaker and weaker; the coincidence between PDO and precipitation is shown in the whole time series. Moreover, in recent 100 years, PDO is becoming a pace-maker of the precipitation on the 70-80a time scale.展开更多
By studying typical "Top Eight Views" in cities like Xining,Lanzhou and Yinchuan in the upper reaches of the Yellow River,mountain and water landscapes in the study area were analyzed in terms of natural eco...By studying typical "Top Eight Views" in cities like Xining,Lanzhou and Yinchuan in the upper reaches of the Yellow River,mountain and water landscapes in the study area were analyzed in terms of natural ecology;bridges,canals,ferries,pavilions,mansions,towers,temples,historical sites,production and living landscapes were analyzed in terms of humanistic ecology.On this basis,"Top Eight Views" in the upper reaches of the Yellow River were compared and the following conclusions obtained:mountain landscapes were distributed in the whole region,waterscapes unevenly valued in different cities,bridges,canals and ferries mostly located in Ningxia,temples commonly found in all cities,garden arts introduced into cities,traditional cultures carried forward by historical relics.Then the relationship between "Top Eight Views" and regional eco-cultures was analyzed,and it was proposed that humanistic and cultural connotations of these "Top Eight Views" contributed a lot to beautifying urban environment,satisfying needs of the locals' spiritual life,carrying forward local history and culture,enriching urban cultural connotations,expanding living spaces of local residents and improving integrated functions of cities."Top Eight Views" culture complied with the construction gist of urban ecological cultures,and was of great referential value for the construction of urban ecological cultures in the upper reaches of the Yellow River,and also the healthy,scientific and sustainable development of local cities.展开更多
The relationship between the groundwater and the surface eco-environment in arid area is very close. In this paper, the authors extracted normalized difference vegetation index (NDVI) and vegetation conditional rat...The relationship between the groundwater and the surface eco-environment in arid area is very close. In this paper, the authors extracted normalized difference vegetation index (NDVI) and vegetation conditional ratio (VCR) from MODIS images, and analyzed the relationships among NDVI, VCR and the measured data of groundwater of the same location in the research region. Based on this, the depth of groundwater suitable for vegetation growth in the upper-middle reaches of the Yellow River basin has been calculated. The results show that the depth of groundwater suitable for vegetation growth in the research region ranges from 0.8 to 4.5m, and the optimal groundwater depth is 1.2m. The method developed in this study is applicable to research the relationship between the groundwater and land surface vegetation environment on large-scale in arid area.展开更多
Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among ...Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among which the biggest altitude above river level is 401m and the formation age of the highest terrace is 1.57 Ma B.P. Based on comparative analysis of the Yellow River terraces located separately in the Mijiashan mountain, the Chemuxia gorge, the Heishanxia gorge and the other river terraces in the vast extent of the northern part of China, it has been found that the tectonic processes resulting in the formation of the terrace series is one of multi-gradational features, i.e., a terrace series can include the various terraces produced by tectonic uplifts of different scopes or scales and different ranks. The Yellow River terrace series in the study region can be divided into three grades. Among them, in the first grade there are 6 terraces which were formed separately at the same time in the vast extent of the northern part of China and represent the number and magnitude of uplift of the Qinghai-Xizang Plateau since 1.6 Ma B. P.; in the second grade there are 5 terraces which were separately and simultaneously developed within the Haiyuan-Tianjingshan tectonic region and represent the number and magnitude of uplift of this tectonic region itself since 1.6Ma B.P.; in the third grade there are 10 terraces which developed on the eastern slope of the Mijiashan mountain and represent the number and amplitude of uplift of the Haiyuan tectonic belt itself since 1.6Ma B.P. Comparison of the terrace ages with loess-paleosoil sequence has also showed that the first grade terraces reflecting the vast scope uplifts of the Qinghai-Xizang Plateau are very comparable with climatic changes and their formation ages all correspond to the interglacial epochs during which paleosoils were formed. This implies that the vast extent tectonic uplifts resulting in river down-cutting are closely related to the warm-humid climatic periods which can also result in river downward erosion after strong dry and cold climatic periods, and they have jointly formed the tectonic-climatic cycles. There exists no unanimous and specific relationship between the formation ages of the second and third grade terraces and climatic changes and it is shown that the formation of those terraces was most mainly controlled by tectonic uplifts of the Tianjingshan block and the Haiyuan belt. The river terraces in the study region, therefore, may belong to 2 kinds of formation cause. One is a tectonic-climatic cyclical terrace produced jointly by vast extent tectonic uplifts and climatic changes, and the terraces of this kind are extensively distributed and can be well compared with each other among regions. Another is a pulse-tectonic cyclical terrace produced by local tectonic uplifts as dominant elements, and their distribution is restricted within an active belt and can not be compared with among regions.展开更多
The upper reaches of the Yellow River in northeastern Tibetan Plateau are geohazards areas.The evolution of the Yellow River,chronology of some landslides,and spatiotemporal distribution characteristics of super large...The upper reaches of the Yellow River in northeastern Tibetan Plateau are geohazards areas.The evolution of the Yellow River,chronology of some landslides,and spatiotemporal distribution characteristics of super large scale and giant landslides within the region are summarized using paleoclimate evidence,and the relationship between the intensive landslide period and climatic changes since the Last Glacial period is analyzed.It is concluded that (1) Super large scale and giant landslides are distributed widely within the region,particularly in the Qunke-Jianzha basin.(2) The chronological sequence of landslides is established by dating the slip zones of landslides and analyzing the relations between landslides and their overlying or underlying loess formations.Five landslide development periods are determined:53-49 ka BP,33-24 ka BP,10-8 ka BP,5-3.5 ka BP,and the present.(3) These correspond closely to warm and wet periods during the last 100,000 years,i.e.,two weak paleosol development stages of Malan loess deposited during the last Glacial period in the Chinese loess Plateau,L1-4 and L1-2 that belong to the marine oxygen isotope stage 3,the last deglaeial period,the Holocene Optimum,and the modern global warming period.(4) Landslide triggers may be closely linked to warm and wet periods related to rapid climatic transitions.展开更多
Ecological security assessment and early warning research possess the attributes of spatiality, non-linearity and randomicity, so we must process much spatial information. Spatial analysis and data management are the ...Ecological security assessment and early warning research possess the attributes of spatiality, non-linearity and randomicity, so we must process much spatial information. Spatial analysis and data management are the advantages of GIS, which can define distribution trend and spatial relations of environmental factors, and show ecological security pattern graphically. Spatial differences of ecological security assessment based on GIS are discussed in this paper, of which the middle and lower reaches of the Liaohe River is taken as a study case. First, to work out pressure-state-response (P-S-R) assessment indicators system, and investigate in person and gather information; second, to digitize the watershed; third, to quantize and calculate by the fuzzy method; last, to construct GIS grid database, and expound spatial differences of ecological security by GIS interpolation and assembly analysis.展开更多
Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sedime...Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sediments of the shallow lakes in the area.The organic P fractions in the sediments were in the order of moderately labile organic P(MLOP) > moderately resistant organic P(MROP) > highly resistant organic P(HROP) > labile organic P(LOP),with average proportional ratios of 13.2:2.8:1.3:1.0.LOP,MLOP,and MROP were significantly related to the contents of total organic carbon(TOC),water-soluble P(WSP),algal-available P(AAP),NaHCO3-extractable P(Olsen-P),total P(TP),organic P(OP),and inorganic P(IP).However,HROP was significantly related to OP and weakly correlated with TOC,WSP,AAP,Olsen-P,TP or IP.This suggested that organic P,especially LOP and MLOP in sediments,deserved even greater attention than IP in regards to lake eutrophication.In terms of organic P,sediments were more hazardous than soils in lake eutrophication.Although OP concentrations were higher in moderately polluted sediment than those in heavily polluted sediment,LOP and MLOP were higher in the heavily polluted sediment,which indicated that heavily polluted sediment was more hazardous than moderately polluted sediment in lake eutrophication.展开更多
Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance o...Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.展开更多
Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the...Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the middle and lower reaches of the Yangtze River (MLRYR) and the related circulation anomalies in the Eastern Hemisphere. Our results have demonstrated that a significantly increasing trend is observed in daily minimum temperature in the past 50 years. And in some regions in the Northern Hemisphere, the opposite scenarios are observed in circulation anomalies in lower and upper parts of the troposphere in the years when the temperatures are higher than normal, as compared to those in the years when the temperatures are lower than normal in the middle and lower reaches of the Yangtze River (MLRYR). Additionally, the anomalous circulation structure in vertical direction in both the high and lower temperature years are barotropic. It is found that the emergence and maintenance of the aforementioned anomalous circulations are related to three kinds of wave train teleconnection patterns. Further more, influences of the long wave surface radiation on the air temperature are stronger in the nighttime than that in the daytime. While both the maximum and minimum temperatures have negative relationships with the sensible heat flux but positive relationships with the latent heat flux. To some extent, the anomalous dynamic heating (cooling) caused by the vertical thermal advection as well as the diabatic heating (cooling) caused by diabatic processes can explain the formation of the high (low) temperature events in the middle and lower reaches of the Yangtze River (MLRYR) in boreal summer.展开更多
Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using fie...Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.展开更多
Studies of the Pb, Sr and Nd isotopic composition of Mesozoic intrusive rocks indicate that the basement of the copper-gold metallogenic belt of the middle and lower reaches of the Yangtze River has “two-layer struct...Studies of the Pb, Sr and Nd isotopic composition of Mesozoic intrusive rocks indicate that the basement of the copper-gold metallogenic belt of the middle and lower reaches of the Yangtze River has “two-layer structure” and partly has “multi-layered structure”, and is inhomogeneous and shows the distinct feature of E-W provincialism. The calculated model lead ages (t1) are mostly greater than 2600 Ma, and the model neodymium ages (TDM) vary from 953 to 2276 Ma and concentrate in two time intervals: 1800–2000 Ma and 1200–1600 Ma. It is concluded that the basement of the MBYR is composed of the Late Archaeozoic to Middle Proterozoic metamorphic series and that the crust was initiated in the Archaean and continued to grow in the Early and Middle Proterozoic, and the proportion of new crust formed by mantle differentiation during the Late Proterozoic is low.展开更多
The paper deals with the background features, formation and distribution of the chemical el-ements K, Na, Ca, Mg, Si, Fe, Mn, Cr, Ni,V, Co, Ti, Mo, Cu, Pb, Zn, As, Hg, Cd, Be, Li, Sr, B,F, Cl, Br and I in the groundwa...The paper deals with the background features, formation and distribution of the chemical el-ements K, Na, Ca, Mg, Si, Fe, Mn, Cr, Ni,V, Co, Ti, Mo, Cu, Pb, Zn, As, Hg, Cd, Be, Li, Sr, B,F, Cl, Br and I in the groundwater in the region of the middle and lower reaches of the YangtzeRiver and their relations to the composition of the water-bearing media, properties of the overly-ing rocks and soils, redox environment, and groundwater flow condition, mineralization and pHof groundwater.展开更多
The impact of inputs on farm production growth was evaluated by analyzing the economic data of the upper and middle parts of the Yellow River basin, China for the period of 1980-1999. Descriptive statistics were emplo...The impact of inputs on farm production growth was evaluated by analyzing the economic data of the upper and middle parts of the Yellow River basin, China for the period of 1980-1999. Descriptive statistics were employed to characterize the temporal trends and spatial patterns in farm production and five pertinent inputs of cultivated cropland, irrigation ratio, agricultural labor, machinery power and chemical fertilizer. Stochastic frontier production function was applied to quantify the dependence of the farm production on these inputs. The growth of farm production was decomposed to reflect the contributions by input growths and change in total factor productivity.. The change in total factor productivity was further decomposed into the changes in technology and in technical efficiency. The gross value of farm production in the region of study increased by 1.6 fold during 1980-1999. Among the five selected farm inputs, machinery power and chemical fertilizer increased by 1.8 and 2.8 fold, respectively. The increases in cultivated cropland, irrigated cropland, and agricultural labor were all less than 0.16 fold. The growth in the farm production was primarily contributed by the increase in the total factor productivity during 1980-1985, and by input growths after 1985. More than 80% of the contributions by input growths were attributed to the increased application of fertilizer and machinery. In the change of total factor productivity, the technology change dominated over the technical efficiency change in the study period except in the period of 1985-1990, implying that institution and investment played important roles in farm production growth. There was a decreasing trend in the technical efficiency in the region of study, indicating a potential to increase farm production by improving the technical efficiency in farm activities. Given the limited natural resources in the basin, the results of this study suggested that, for a sustainable growth of farm production in the area, efforts should be directed to technology progress and improvement in technical efficiency in the use of available resources.展开更多
Using geographic information system (GIS) techniques and the newest seasonal and annual average precipitation data of 679 meteorological stations from 1971 to 2000, the multiple regressions equations of the precipitat...Using geographic information system (GIS) techniques and the newest seasonal and annual average precipitation data of 679 meteorological stations from 1971 to 2000, the multiple regressions equations of the precipitation and topographical variables are established to extract the effect of topography on the annual and seasonal precipitation in the upper-middle reaches of the Yangtze River. Then, this paper uses a successive interpolation approach (SIA), which combines GIS techniques with the multiple regressions, to improve the accuracy of the spatial interpolation of annual and seasonal rainfall. The results are very satisfactory in the case of seasonal rainfall, with the relative error of 6.86%, the absolute error of 13.07 mm, the average coefficient of variation of 0.070, and the correlation coefficient of 0.9675; in the case of annual precipitation, with the relative error of 7.34%, the absolute error of 72.1 mm, the average coefficient of variation of 0.092, and the correlation coefficient of 0.9605. The analyses of annual mean precipitation show that the SIA calculation of 3-5 steps considerably improves the interpolation accuracy, decreasing the absolute error from 211.0 mm to 62.4 mm, the relative error from 20.74% to 5.97%, the coefficient of variation from 0.2312 to 0.0761, and increasing the correlation coefficient from 0.5467 to 0.9619. The SIA iterative results after 50 steps identically converge to the observed precipitation.展开更多
基金supported by Beijing Forestry University for Young Scientist and funded by the National Natural Science Foundation of China (Grant No.40871136)
文摘Sediment discharge from the Yellow River originates mainly from the drainage area between Hekouzhen and Longmen, i.e., the Helong area. Spatial-temporal variations of the vegetation cover in this area during the 1981-2007 period have been investigated using GIMMS and SPOT VGT NDVI data. We have also analyzed the interannual variations in vegetation cover and changes in annual runoff and sediment discharge, the consequences from precipitation change and the Grain for Green Project (GGP). The results show that vegetation cover of the Helong area has increased during the 1981-2007 period. The northwestern part the Helong area, where the flat sandy lands are covered by grass, has experienced the largest increase. The region where the vegetation cover has declined is largely found in the southern and southeastern Helong area, which is a gullied hilly area or forested. Although precipitation was relatively low during the 1999-2007 period, the vegetation cover showed a significant increase in the Helong area, due to the implementation of the GGP. During this period, the most significant improvement in the vegetation cover occurred mainly in the gullied hilly areas of the Loess Plateau, such as the drainage basins of the Kuyehe and Tuweihe rivers and the middle and lower reaches of the Wudinghe and Yanhe rivers. A comparison of the average annual maximum NDVI between the earlier (1998-2002) stage and the next five years (2003-2007) of the GGP indicates that the areas with increases of 10% and 20% in NDVI account for 72.5% and 36.4% of the total area, respectively. Interannual variation of annual runoff and sediment discharge shows a declining trend, especially since the 1980s, when the decrease became very obvious. Compared with the 1950-1969 period, the average runoff during the 1980-2007 period was reduced by 34.8 × 10^8 m3 and the sediment discharge by 6.4 ×10^8 t, accounting for 49.4% and 64.9% of that in the 1950-1969 period, respectively. There is a positive correlation between the annual maximum NDVI and annual runoff and sediment discharge. This correlation was reversed since the implementation of the GGP in 1999 and vegetation cover in the He- long area has increased, associated with the decrease in runoff and sediment discharge. Less precipitation has been an important fac- tor driving the decrease in runoff and sediment discharge during 1999 2007. However, restoration and improvement of the vegetation cover may also have played a significant role in accelerating the decrease in annual runoff and sediment discharge by enhancing evapotranspiration and alleviating soil erosion.
文摘The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment is determined determined on the concept of net increase of sediment yield by using analytical method of sediment formation at different positions in the catchment The result shows that sediments in a small catchment in the middle reaches of the Yellow River mainly come from slopes. ms paper indicated that the sediment sources from slopes are roughly 55, 60, 78 and 85 % of the total sediment yield of a small catchment in Yangdaogou. Wangjiagou. Jiuyuangou and Nanxiaohegou, respectively, due to impacts of varying degress from slope runoff.
文摘This paper researches and analyses the critical envirormental situation in the Middle Reaches of the Yellow River and compiles the map of critical environmental situation of this area (1:2,000,000). Five types of environmental situation (ES) are divided, namely, conflict ES, critical ES, crisis ES, disastrous ES and accidental ES and 7 groups of main factors are used to identify and classify the critical environmental situation after considering the speciality of this region and the law of guiding factors. They are pollution, endemic disease, soil erosion, drought and water-shortage, forest degeration, wind-erosion and desertification, and soil salinization. Based on mapping and analysis, the paper also concludes the regional distribution law of critical environmental situation of this region and divides it into 8 small districts through combining the critical envirormental situation, regional distribution law and guiding factors. This can provide scientific basis and reference for preserving and renovating the environments with different fragile types and fragile levels.
文摘The sediment sequence analysis of Mann-Kendall method based on major rivers of 10 hydrological station in the middle reaches of the Yellow River*[1]*t,.The results show that:The main rivers in the middle reaches of the Yellow River hydrologic station sediment overall showed a trend of decreased significantly.Sediment discharge of all stations except Gao Jiachuan station have reached the maximum in 1956-1969s[2_3].Among various hydrologic station sediment discharge of inter-generational are generally shows the tendency of reducing year by year.Calculate the sediment transport of major river basin of Yellow River,which average is 0.63.
基金National Natural Science Foundation of China,No.41601290。
文摘The middle reaches of the Yellow River represent an important area for the protection and development of the Yellow River Basin.Most of the area of the river basin is within the Loess Plateau,which establishes it as a fragile ecological environment.Firstly,using high-resolution data of land use in the watershed from the past 30 years,landscape ecological risk(LER)sample units are defined and an ecological risk index(ERI)model is constructed.Kriging interpolation is used to display the LER spatial patterns,and the temporal and spatial evolution of risk is examined.Secondly,the spatial evolution of land use landscape change(LULC)is analyzed,and the correlation between land use landscape and ecological risk is discussed.Finally,Based on the LER model,a risk-based minimum cumulative resistance(MCR)model is established,and a comprehensive protection and management network system for the ecological source-corridor-node system designed.The results suggest that in the past 30 years,LER has a high spatial correlation and areas with extremely high ecological risks are concentrated in northwest and southeast areas of the region,of which the northwest area accounts for the highest proportion.Risk intensity is closely related to the spatial pattern of land use landscape.ERI values of forestland,grasslands,and unused land and farmland are low,medium,and high,respectively.The trend of risk evolution is“overall improvement and partial deterioration”.Man-made construction and exploitation is the most direct reason for the increase of local ecological risks.The high ecological-risk areas in the northwest are dominated by deserts which reduce excessive interference by human activities on the natural landscape.Recommendations are:high-quality farmland should be protected;forestland should be restored and rebuilt;repair and adjust the existing ecosystem to assist in landscape regeneration and reconstruction;utilize the overall planning vision of“mountain,water,forest,field,lake,grass,sand”to design a management project at the basin scale;adhere to problem-oriented and precise policy implementation.
基金supported by the National Natural Science Foundation of China(42041006)the Natural Science Foundation of Qinghai Province(2020-ZJ-906).
文摘In order to study the infiltration characteristics of grassland soil in the super large scale landslides distribution area in the upper reaches of the Yellow River,this study selected the Xiazangtan super large scale distribution area in Jianzha County as the study area.Through experiments and numerical simulations,plant roots characteristics,soil physical properties and infiltration characteristics of naturally grazed grassland and enclosed grassland with different slope directions were compared and analyzed,and the influence of rainfall on seepage field and stability of the two grassland slopes were discussed.The results show that the highest soil moisture infiltration capacity(FIR)is found on the shady slope of the enclosed grassland(2.25),followed by the sunny slope of the enclosed grassland(1.23)and the shady slope of the naturally grazed grassland(-0.87).Correlation analysis show that soil water content,root dry weight density,total soil porosity,number of forks and root length are positively correlated with infiltration rate(P<0.05),whereas soil dry density is negatively correlated with infiltration rate(P<0.05).The results of stepwise regression analyses show that soil water content,total soil porosity,root length and number of forks are the main factors affecting soil infiltration capacity.And the ability of roots to increase soil infiltration by improving soil properties is higher than the effect of roots itself.After 60 min of simulated rainfall,the safety factors of the shady slopes of naturally grazed grassland and enclosed grassland are reduced by 29.56%and 19.63%,respectively,comparing to those before rainfall.Therefore,in this study,the roots play a crucial role in regulating soil infiltration and enhance slope stability by increasing soil water content,soil total porosity and shear strength while decreasing soil dry density.The results of this study provide theoretical evidence and practical guidance for the effective prevention and control of secondary geological disasters such as soil erosion and shallow landslide on the slope of river banks in the study area by using plant ecological measures.
基金National Natural Science Foundation of China, No. 40331013 No.90502009 No. 40571007, No. 40701021
文摘Based on the long-term precipitation series with annual time resolution in the middle and lower reaches of the Yellow River and its four sub-regions during 1736-2000 reconstructed from the rainfall and snowfall archives of the Qing Dynasty, the precipitation cycles are analyzed by wavelet analysis and the possible climate forcings, which drive the precipitation changes, are explored. The results show that: the precipitation in the middle and lower reaches of the Yellow River has inter-annual and inter-decadal oscillations like 2-4a, quasi-22a and 70-80a. The 2-4a cycle is linked with El Nino events, and the precipitation is lower than normal year in the occurrence of the El Nino year or the next year; for the quasi-22a and the 70-80a cycles, Wolf Sun Spot Numbers and Pacific Decadal Oscillation (PDO) coincide with the two cycle signals. However, on a 70-80a time scale, the coincidence between solar activity and precipitation is identified before 1830, and strong (weak) solar activity is generally correlated to the dry (wet) periods; after 1830, the solar activity changes to 80-100a quasi-century long oscillation, and the adjusting action to the precipitation is becoming weaker and weaker; the coincidence between PDO and precipitation is shown in the whole time series. Moreover, in recent 100 years, PDO is becoming a pace-maker of the precipitation on the 70-80a time scale.
基金Supported by Hebei Provincial Social Science Foudation " Ecological Environment and Urban Development in the Upper Reaches of the Yellow River (1368 - 1928) " (HB10GJ016) ~~
文摘By studying typical "Top Eight Views" in cities like Xining,Lanzhou and Yinchuan in the upper reaches of the Yellow River,mountain and water landscapes in the study area were analyzed in terms of natural ecology;bridges,canals,ferries,pavilions,mansions,towers,temples,historical sites,production and living landscapes were analyzed in terms of humanistic ecology.On this basis,"Top Eight Views" in the upper reaches of the Yellow River were compared and the following conclusions obtained:mountain landscapes were distributed in the whole region,waterscapes unevenly valued in different cities,bridges,canals and ferries mostly located in Ningxia,temples commonly found in all cities,garden arts introduced into cities,traditional cultures carried forward by historical relics.Then the relationship between "Top Eight Views" and regional eco-cultures was analyzed,and it was proposed that humanistic and cultural connotations of these "Top Eight Views" contributed a lot to beautifying urban environment,satisfying needs of the locals' spiritual life,carrying forward local history and culture,enriching urban cultural connotations,expanding living spaces of local residents and improving integrated functions of cities."Top Eight Views" culture complied with the construction gist of urban ecological cultures,and was of great referential value for the construction of urban ecological cultures in the upper reaches of the Yellow River,and also the healthy,scientific and sustainable development of local cities.
文摘The relationship between the groundwater and the surface eco-environment in arid area is very close. In this paper, the authors extracted normalized difference vegetation index (NDVI) and vegetation conditional ratio (VCR) from MODIS images, and analyzed the relationships among NDVI, VCR and the measured data of groundwater of the same location in the research region. Based on this, the depth of groundwater suitable for vegetation growth in the upper-middle reaches of the Yellow River basin has been calculated. The results show that the depth of groundwater suitable for vegetation growth in the research region ranges from 0.8 to 4.5m, and the optimal groundwater depth is 1.2m. The method developed in this study is applicable to research the relationship between the groundwater and land surface vegetation environment on large-scale in arid area.
文摘Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among which the biggest altitude above river level is 401m and the formation age of the highest terrace is 1.57 Ma B.P. Based on comparative analysis of the Yellow River terraces located separately in the Mijiashan mountain, the Chemuxia gorge, the Heishanxia gorge and the other river terraces in the vast extent of the northern part of China, it has been found that the tectonic processes resulting in the formation of the terrace series is one of multi-gradational features, i.e., a terrace series can include the various terraces produced by tectonic uplifts of different scopes or scales and different ranks. The Yellow River terrace series in the study region can be divided into three grades. Among them, in the first grade there are 6 terraces which were formed separately at the same time in the vast extent of the northern part of China and represent the number and magnitude of uplift of the Qinghai-Xizang Plateau since 1.6 Ma B. P.; in the second grade there are 5 terraces which were separately and simultaneously developed within the Haiyuan-Tianjingshan tectonic region and represent the number and magnitude of uplift of this tectonic region itself since 1.6Ma B.P.; in the third grade there are 10 terraces which developed on the eastern slope of the Mijiashan mountain and represent the number and amplitude of uplift of the Haiyuan tectonic belt itself since 1.6Ma B.P. Comparison of the terrace ages with loess-paleosoil sequence has also showed that the first grade terraces reflecting the vast scope uplifts of the Qinghai-Xizang Plateau are very comparable with climatic changes and their formation ages all correspond to the interglacial epochs during which paleosoils were formed. This implies that the vast extent tectonic uplifts resulting in river down-cutting are closely related to the warm-humid climatic periods which can also result in river downward erosion after strong dry and cold climatic periods, and they have jointly formed the tectonic-climatic cycles. There exists no unanimous and specific relationship between the formation ages of the second and third grade terraces and climatic changes and it is shown that the formation of those terraces was most mainly controlled by tectonic uplifts of the Tianjingshan block and the Haiyuan belt. The river terraces in the study region, therefore, may belong to 2 kinds of formation cause. One is a tectonic-climatic cyclical terrace produced jointly by vast extent tectonic uplifts and climatic changes, and the terraces of this kind are extensively distributed and can be well compared with each other among regions. Another is a pulse-tectonic cyclical terrace produced by local tectonic uplifts as dominant elements, and their distribution is restricted within an active belt and can not be compared with among regions.
基金financially supported by the National Nature Science Foundation of China under Grant No. 41372333, 40802089, 41172158China Geological Survey (grant No. 1212011220123)
文摘The upper reaches of the Yellow River in northeastern Tibetan Plateau are geohazards areas.The evolution of the Yellow River,chronology of some landslides,and spatiotemporal distribution characteristics of super large scale and giant landslides within the region are summarized using paleoclimate evidence,and the relationship between the intensive landslide period and climatic changes since the Last Glacial period is analyzed.It is concluded that (1) Super large scale and giant landslides are distributed widely within the region,particularly in the Qunke-Jianzha basin.(2) The chronological sequence of landslides is established by dating the slip zones of landslides and analyzing the relations between landslides and their overlying or underlying loess formations.Five landslide development periods are determined:53-49 ka BP,33-24 ka BP,10-8 ka BP,5-3.5 ka BP,and the present.(3) These correspond closely to warm and wet periods during the last 100,000 years,i.e.,two weak paleosol development stages of Malan loess deposited during the last Glacial period in the Chinese loess Plateau,L1-4 and L1-2 that belong to the marine oxygen isotope stage 3,the last deglaeial period,the Holocene Optimum,and the modern global warming period.(4) Landslide triggers may be closely linked to warm and wet periods related to rapid climatic transitions.
文摘Ecological security assessment and early warning research possess the attributes of spatiality, non-linearity and randomicity, so we must process much spatial information. Spatial analysis and data management are the advantages of GIS, which can define distribution trend and spatial relations of environmental factors, and show ecological security pattern graphically. Spatial differences of ecological security assessment based on GIS are discussed in this paper, of which the middle and lower reaches of the Liaohe River is taken as a study case. First, to work out pressure-state-response (P-S-R) assessment indicators system, and investigate in person and gather information; second, to digitize the watershed; third, to quantize and calculate by the fuzzy method; last, to construct GIS grid database, and expound spatial differences of ecological security by GIS interpolation and assembly analysis.
基金the China’s National Basic Research Program:"Studies on the Process of Eutrophication of Lakesand the Mechanism of the Blooming of Blue Green Alga" (No2002CB412304)
文摘Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sediments of the shallow lakes in the area.The organic P fractions in the sediments were in the order of moderately labile organic P(MLOP) > moderately resistant organic P(MROP) > highly resistant organic P(HROP) > labile organic P(LOP),with average proportional ratios of 13.2:2.8:1.3:1.0.LOP,MLOP,and MROP were significantly related to the contents of total organic carbon(TOC),water-soluble P(WSP),algal-available P(AAP),NaHCO3-extractable P(Olsen-P),total P(TP),organic P(OP),and inorganic P(IP).However,HROP was significantly related to OP and weakly correlated with TOC,WSP,AAP,Olsen-P,TP or IP.This suggested that organic P,especially LOP and MLOP in sediments,deserved even greater attention than IP in regards to lake eutrophication.In terms of organic P,sediments were more hazardous than soils in lake eutrophication.Although OP concentrations were higher in moderately polluted sediment than those in heavily polluted sediment,LOP and MLOP were higher in the heavily polluted sediment,which indicated that heavily polluted sediment was more hazardous than moderately polluted sediment in lake eutrophication.
基金This work was supported by the Knowledge Innovation Program from the Cold and Add Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (CACX2003102)the Chinese Academy of Sciences (KZCX 1 - 10-03-01)the National Natural Science Foundation of China (40401012).
文摘Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.
基金The key technology R&D program of China, No.2007BAC29B02Project of Jiangsu Key Laboratory of Meteorological Disaster, No.KLME060101
文摘Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the middle and lower reaches of the Yangtze River (MLRYR) and the related circulation anomalies in the Eastern Hemisphere. Our results have demonstrated that a significantly increasing trend is observed in daily minimum temperature in the past 50 years. And in some regions in the Northern Hemisphere, the opposite scenarios are observed in circulation anomalies in lower and upper parts of the troposphere in the years when the temperatures are higher than normal, as compared to those in the years when the temperatures are lower than normal in the middle and lower reaches of the Yangtze River (MLRYR). Additionally, the anomalous circulation structure in vertical direction in both the high and lower temperature years are barotropic. It is found that the emergence and maintenance of the aforementioned anomalous circulations are related to three kinds of wave train teleconnection patterns. Further more, influences of the long wave surface radiation on the air temperature are stronger in the nighttime than that in the daytime. While both the maximum and minimum temperatures have negative relationships with the sensible heat flux but positive relationships with the latent heat flux. To some extent, the anomalous dynamic heating (cooling) caused by the vertical thermal advection as well as the diabatic heating (cooling) caused by diabatic processes can explain the formation of the high (low) temperature events in the middle and lower reaches of the Yangtze River (MLRYR) in boreal summer.
基金financially supported by the National Nature Science Foundation of China under Grant No.41372333,41172158China Geological Survey(grant No.1212011220123)
文摘Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.
基金This study was supported by the National Natural Science Foundation of China grant 49802007.
文摘Studies of the Pb, Sr and Nd isotopic composition of Mesozoic intrusive rocks indicate that the basement of the copper-gold metallogenic belt of the middle and lower reaches of the Yangtze River has “two-layer structure” and partly has “multi-layered structure”, and is inhomogeneous and shows the distinct feature of E-W provincialism. The calculated model lead ages (t1) are mostly greater than 2600 Ma, and the model neodymium ages (TDM) vary from 953 to 2276 Ma and concentrate in two time intervals: 1800–2000 Ma and 1200–1600 Ma. It is concluded that the basement of the MBYR is composed of the Late Archaeozoic to Middle Proterozoic metamorphic series and that the crust was initiated in the Archaean and continued to grow in the Early and Middle Proterozoic, and the proportion of new crust formed by mantle differentiation during the Late Proterozoic is low.
文摘The paper deals with the background features, formation and distribution of the chemical el-ements K, Na, Ca, Mg, Si, Fe, Mn, Cr, Ni,V, Co, Ti, Mo, Cu, Pb, Zn, As, Hg, Cd, Be, Li, Sr, B,F, Cl, Br and I in the groundwater in the region of the middle and lower reaches of the YangtzeRiver and their relations to the composition of the water-bearing media, properties of the overly-ing rocks and soils, redox environment, and groundwater flow condition, mineralization and pHof groundwater.
基金support was partially provided by the University of Connecticut Research Foundation,Storrs Agricultural Experiment Station,Chinese Academy of Sciences Outstanding Overseas Chinese Scholars Award,and the National Natural Science Foundation of China(40671071).
文摘The impact of inputs on farm production growth was evaluated by analyzing the economic data of the upper and middle parts of the Yellow River basin, China for the period of 1980-1999. Descriptive statistics were employed to characterize the temporal trends and spatial patterns in farm production and five pertinent inputs of cultivated cropland, irrigation ratio, agricultural labor, machinery power and chemical fertilizer. Stochastic frontier production function was applied to quantify the dependence of the farm production on these inputs. The growth of farm production was decomposed to reflect the contributions by input growths and change in total factor productivity.. The change in total factor productivity was further decomposed into the changes in technology and in technical efficiency. The gross value of farm production in the region of study increased by 1.6 fold during 1980-1999. Among the five selected farm inputs, machinery power and chemical fertilizer increased by 1.8 and 2.8 fold, respectively. The increases in cultivated cropland, irrigated cropland, and agricultural labor were all less than 0.16 fold. The growth in the farm production was primarily contributed by the increase in the total factor productivity during 1980-1985, and by input growths after 1985. More than 80% of the contributions by input growths were attributed to the increased application of fertilizer and machinery. In the change of total factor productivity, the technology change dominated over the technical efficiency change in the study period except in the period of 1985-1990, implying that institution and investment played important roles in farm production growth. There was a decreasing trend in the technical efficiency in the region of study, indicating a potential to increase farm production by improving the technical efficiency in farm activities. Given the limited natural resources in the basin, the results of this study suggested that, for a sustainable growth of farm production in the area, efforts should be directed to technology progress and improvement in technical efficiency in the use of available resources.
基金The National 973 Project of China, No.2001CB309404 O versea O utstanding Youth Cooperation Project, N o. 40128001/D 05N ationalN aturalScience Foundation ofChina,N o.49375248 Zhejiang Province Science Research (C33)Project,N o.2004C33082
文摘Using geographic information system (GIS) techniques and the newest seasonal and annual average precipitation data of 679 meteorological stations from 1971 to 2000, the multiple regressions equations of the precipitation and topographical variables are established to extract the effect of topography on the annual and seasonal precipitation in the upper-middle reaches of the Yangtze River. Then, this paper uses a successive interpolation approach (SIA), which combines GIS techniques with the multiple regressions, to improve the accuracy of the spatial interpolation of annual and seasonal rainfall. The results are very satisfactory in the case of seasonal rainfall, with the relative error of 6.86%, the absolute error of 13.07 mm, the average coefficient of variation of 0.070, and the correlation coefficient of 0.9675; in the case of annual precipitation, with the relative error of 7.34%, the absolute error of 72.1 mm, the average coefficient of variation of 0.092, and the correlation coefficient of 0.9605. The analyses of annual mean precipitation show that the SIA calculation of 3-5 steps considerably improves the interpolation accuracy, decreasing the absolute error from 211.0 mm to 62.4 mm, the relative error from 20.74% to 5.97%, the coefficient of variation from 0.2312 to 0.0761, and increasing the correlation coefficient from 0.5467 to 0.9619. The SIA iterative results after 50 steps identically converge to the observed precipitation.