Mars is the terrestrial planet in the solar system that is closest to the Earth.Studying the atmospheric parameters of Mars and studying the evolutionary history of the Martian environment on this basis is helpful for...Mars is the terrestrial planet in the solar system that is closest to the Earth.Studying the atmospheric parameters of Mars and studying the evolutionary history of the Martian environment on this basis is helpful for people to discover signs of extraterrestrial life and to study the trend of climate change on Earth.Mie–Rayleigh scattering lidar is an important technology for detecting parameters from the surface to the middle and upper atmosphere.Because of the different aerosol distributions,Mie scattering and Rayleigh scattering have their own optimal detection ranges.Given the long period and high cost of any deep space exploration program,it is important to conduct sufficient feasibility studies and parameter simulations before the payload is launched.In this study,a parameterized lidar mathematical model and Earth’s atmospheric mode are used to compare with the measured signals of ground-based Mie–Rayleigh scattering lidar,and the correctness of the lidar mathematical model is verified.Using the model,we select the landing area of Tianwen-1 and substitute it into the Martian atmospheric mode,and then the Mie–Rayleigh lidar backscattering signal and the key parameters of the lidar system are systematically analyzed under the conditions of a clean Martian atmosphere and a global sandstorm.In addition,the optimal detection altitude ranges of Mie scattering and Rayleigh scattering on Mars under different atmospheric conditions are obtained,which provides a reference for the practical design and development of the subsequent lidar system for the Martian atmospheric environment.展开更多
Observation of optical properties of atmospheric aerosols, especially their behavior near the surface level, is indispensable for better understanding of atmospheric environmental conditions. Concurrent observations o...Observation of optical properties of atmospheric aerosols, especially their behavior near the surface level, is indispensable for better understanding of atmospheric environmental conditions. Concurrent observations of ground-based instruments and satellite-borne sensors are useful for attaining improved accuracy in the observation of relatively wide area. In the present paper, aerosol parameters in the lower troposphere are monitored using a plan position indicator (PPI) lidar, ground-sampling instruments (a nephelometer, an aethalometer, and optical particle counters), as well as a sunphotometer. The purpose of these observations is to retrieve the aerosol extinction coefficient (AEC) and aerosol optical thickness (AOT) simultaneously at the overpass time of Landsat-8 satellite. The PPI lidar, operated at 349 nm, provides nearly horizontal distribution of AEC in the lower part of the atmospheric boundary layer. For solving the lidar equation, the boundary condition and lidar ratio are determined from the data of ground sampling instruments. The value of AOT, on the other hand, is derived from sunphotometer, and used to analyze the visible band imagery of Landsat-8 satellite. The radiative transfer calculation is conducted using the MODTRAN code with the original aerosol type that has been determined from the ground sampling data coupled with the Mie scattering calculation. Reasonable agreement is found between the spatial distribution of AEC from the PPI lidar and that of AOT from the blue band (band 2) of Landsat-8. The influence of AOT on the values of apparent surface reflectance is also discussed.展开更多
基金financial support from the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41030000)the National Natural Science Foundation of China (Grant Nos. 42125402, 42188101, 42304165, and 42374182)+2 种基金the Key-Area Research and Development Program of Guangdong Province (Grant No. 2020B0303020001)the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0300302)
文摘Mars is the terrestrial planet in the solar system that is closest to the Earth.Studying the atmospheric parameters of Mars and studying the evolutionary history of the Martian environment on this basis is helpful for people to discover signs of extraterrestrial life and to study the trend of climate change on Earth.Mie–Rayleigh scattering lidar is an important technology for detecting parameters from the surface to the middle and upper atmosphere.Because of the different aerosol distributions,Mie scattering and Rayleigh scattering have their own optimal detection ranges.Given the long period and high cost of any deep space exploration program,it is important to conduct sufficient feasibility studies and parameter simulations before the payload is launched.In this study,a parameterized lidar mathematical model and Earth’s atmospheric mode are used to compare with the measured signals of ground-based Mie–Rayleigh scattering lidar,and the correctness of the lidar mathematical model is verified.Using the model,we select the landing area of Tianwen-1 and substitute it into the Martian atmospheric mode,and then the Mie–Rayleigh lidar backscattering signal and the key parameters of the lidar system are systematically analyzed under the conditions of a clean Martian atmosphere and a global sandstorm.In addition,the optimal detection altitude ranges of Mie scattering and Rayleigh scattering on Mars under different atmospheric conditions are obtained,which provides a reference for the practical design and development of the subsequent lidar system for the Martian atmospheric environment.
文摘Observation of optical properties of atmospheric aerosols, especially their behavior near the surface level, is indispensable for better understanding of atmospheric environmental conditions. Concurrent observations of ground-based instruments and satellite-borne sensors are useful for attaining improved accuracy in the observation of relatively wide area. In the present paper, aerosol parameters in the lower troposphere are monitored using a plan position indicator (PPI) lidar, ground-sampling instruments (a nephelometer, an aethalometer, and optical particle counters), as well as a sunphotometer. The purpose of these observations is to retrieve the aerosol extinction coefficient (AEC) and aerosol optical thickness (AOT) simultaneously at the overpass time of Landsat-8 satellite. The PPI lidar, operated at 349 nm, provides nearly horizontal distribution of AEC in the lower part of the atmospheric boundary layer. For solving the lidar equation, the boundary condition and lidar ratio are determined from the data of ground sampling instruments. The value of AOT, on the other hand, is derived from sunphotometer, and used to analyze the visible band imagery of Landsat-8 satellite. The radiative transfer calculation is conducted using the MODTRAN code with the original aerosol type that has been determined from the ground sampling data coupled with the Mie scattering calculation. Reasonable agreement is found between the spatial distribution of AEC from the PPI lidar and that of AOT from the blue band (band 2) of Landsat-8. The influence of AOT on the values of apparent surface reflectance is also discussed.