为了研究钕铁硼铁磁性材料在冲击波作用下的力学与磁学性质,利用一级轻气炮驱动飞片的方法对钕铁硼进行冲击加载实验,采用锰铜压阻传感器测量了钕铁硼内部不同位置的压力变化历程。给出了3~7 GPa压力范围内,钕铁硼的Hugoniot关系以及冲...为了研究钕铁硼铁磁性材料在冲击波作用下的力学与磁学性质,利用一级轻气炮驱动飞片的方法对钕铁硼进行冲击加载实验,采用锰铜压阻传感器测量了钕铁硼内部不同位置的压力变化历程。给出了3~7 GPa压力范围内,钕铁硼的Hugoniot关系以及冲击波阵面上压力与温度的关系;计算了钕铁硼的Grüneisen状态方程参数;建立了飞片碰撞加载钕铁硼的计算模型,对钕铁硼的冲击响应进行了数值模拟计算,计算得到的压力峰值与实验测得的压力峰值基本相符。对冲击后的磁体进行了微观结构观测,分析了钕铁硼退磁机制。结果发现:冲击后磁体发生沿晶断裂,磁体晶界相的微观结构没有发生变化,沿晶断裂弱化了晶界相隔断主相之间交换耦合的作用。经冲击的磁体的矫顽力损失很大,从21.4 k Oe降至3.2 k Oe,在难磁化方向矫顽力只有1.2 k Oe,但难易磁化方向并未发生改变。展开更多
文摘为了研究钕铁硼铁磁性材料在冲击波作用下的力学与磁学性质,利用一级轻气炮驱动飞片的方法对钕铁硼进行冲击加载实验,采用锰铜压阻传感器测量了钕铁硼内部不同位置的压力变化历程。给出了3~7 GPa压力范围内,钕铁硼的Hugoniot关系以及冲击波阵面上压力与温度的关系;计算了钕铁硼的Grüneisen状态方程参数;建立了飞片碰撞加载钕铁硼的计算模型,对钕铁硼的冲击响应进行了数值模拟计算,计算得到的压力峰值与实验测得的压力峰值基本相符。对冲击后的磁体进行了微观结构观测,分析了钕铁硼退磁机制。结果发现:冲击后磁体发生沿晶断裂,磁体晶界相的微观结构没有发生变化,沿晶断裂弱化了晶界相隔断主相之间交换耦合的作用。经冲击的磁体的矫顽力损失很大,从21.4 k Oe降至3.2 k Oe,在难磁化方向矫顽力只有1.2 k Oe,但难易磁化方向并未发生改变。