A calculation formula of ln γ i 0 for solute element i in liquid alloys was derived by use of free volume theory and Miedema formation enthalpy model. The values of ln γ i 0 of solute elements in liqui...A calculation formula of ln γ i 0 for solute element i in liquid alloys was derived by use of free volume theory and Miedema formation enthalpy model. The values of ln γ i 0 of solute elements in liquid copper at 1273 K were obtained. The results obtained show that the coincidence rate of sign (positive or negative) was 90% for the calculated and experimental values, which were basically in the same magnitude.展开更多
Amorphous structure generated by high-energy ball miller(BM)is often used as a precursor for generating nanocomposites through controlled devitrification.The amorphous forming composition range of ternary Al-Cu-Zr sys...Amorphous structure generated by high-energy ball miller(BM)is often used as a precursor for generating nanocomposites through controlled devitrification.The amorphous forming composition range of ternary Al-Cu-Zr system was calculated using the extended Miedema’s semiempirical model.Eleven compositions of Al-Cu-Zr system showed a wide range of negative enthalpy of mixing(-ΔH^(mix))and amorphization(-ΔH^(amor))among the constituent elements was selected for synthesis by BM.They yielded either nanocomposites of partial amorphous and crystalline structure or no amorphous phase at all in the as-milled condition.The Al_(88)Cu_(6)Zr_(6) alloy with relatively small negativeΔH^(mix)(-0.4 kJ/mol)andΔH^(amor)(-14.8 kJ/mol)became completely amorphous after 120 h of milling.展开更多
文摘A calculation formula of ln γ i 0 for solute element i in liquid alloys was derived by use of free volume theory and Miedema formation enthalpy model. The values of ln γ i 0 of solute elements in liquid copper at 1273 K were obtained. The results obtained show that the coincidence rate of sign (positive or negative) was 90% for the calculated and experimental values, which were basically in the same magnitude.
文摘Amorphous structure generated by high-energy ball miller(BM)is often used as a precursor for generating nanocomposites through controlled devitrification.The amorphous forming composition range of ternary Al-Cu-Zr system was calculated using the extended Miedema’s semiempirical model.Eleven compositions of Al-Cu-Zr system showed a wide range of negative enthalpy of mixing(-ΔH^(mix))and amorphization(-ΔH^(amor))among the constituent elements was selected for synthesis by BM.They yielded either nanocomposites of partial amorphous and crystalline structure or no amorphous phase at all in the as-milled condition.The Al_(88)Cu_(6)Zr_(6) alloy with relatively small negativeΔH^(mix)(-0.4 kJ/mol)andΔH^(amor)(-14.8 kJ/mol)became completely amorphous after 120 h of milling.