The Higher Himalayan Crystallines(HHC), in western Garhwal, Uttarakhand are located in a regionalscale intracontinental ductile shear zone(15-20 km wide) bounded by the Main Central Thrust at the base, and the South T...The Higher Himalayan Crystallines(HHC), in western Garhwal, Uttarakhand are located in a regionalscale intracontinental ductile shear zone(15-20 km wide) bounded by the Main Central Thrust at the base, and the South Tibetan Detachment System at the top. The migmatite zone in the centre has the highest grade of metamorphism in the NW Himalayas and show evidence of flowage. Zircons extracted from samples of metasediment, migmatite, biotite granite and in situ partial melt(tourmaline-bearing leucogranite) along the Bhagirathi Valley, preserve U-Pb isotopic evidence of magmatic history, magma source and effects of the Himalayan orogeny in the region. Three distinct periods of zircon growth in the leucogranite record the episodic influx of magma between 46 Ma and 20 Ma indicating a time span of more than 25 Ma between the onset of fluid-fluxed partial melting in the mid-crustal intracontinental shear zone and the emplacement of the magma into the upper crust in a post-collisional extensional setting. Metamorphic zircon growth was initiated about 46 Ma, when the partial melts were generated as the migmatite zone was exhumed.展开更多
Higher Himalayan Crystalline(HHC) complex of the Sikkim Himalaya predominantly consists of high-grade pelitic migmatites.In this study,reaction textures,mineral/bulk rare earth elements (REE),trace element partiti...Higher Himalayan Crystalline(HHC) complex of the Sikkim Himalaya predominantly consists of high-grade pelitic migmatites.In this study,reaction textures,mineral/bulk rare earth elements (REE),trace element partition coefficients and trace element zoning profiles in garnet are used to demonstrate a complex petrogenetic process during crustal anatexis.With the help of equilibrium REE and trace element partitioning model,it is shown that strong enrichment of Effective Bulk Composition(EBC) is responsible for the zoning in garnet in these rocks.The data strongly support disequilibrium element partitioning and suggest that the anatectic melts associated with mafic selvedges are likely produced by disequilibrium melting because of fast melt segregation process.展开更多
Data from a migmatised metapelite raft enclosed within charnockite provide quantitative constraints on the pressure-temperature-time (P-T-t) evolution of the Nagercoil Block at the southernmost tip of peninsular Ind...Data from a migmatised metapelite raft enclosed within charnockite provide quantitative constraints on the pressure-temperature-time (P-T-t) evolution of the Nagercoil Block at the southernmost tip of peninsular India. An inferred peak metamorphic assemblage of garnet, K-feldspar, sillimanite, plagioclase, magnetite, ilmenite, spinel and melt is consistent with peak metamorphic pressures of 6-8 kbar and temperatures in excess of 900 ℃. Subsequent growth of cordierite and biotite record high-temperature retrograde decompression to around 5 kbar and 800 ℃. SHRIMP U-Pb dating of magmatic zircon cores suggests that the sedimentary protoliths were in part derived from felsic igneous rocks with Palae- oproterozoic crystallisation ages. New growth of metamorphic zircon on the rims of detrital grains constrains the onset of melt crystallisation, and the minimum age of the metamorphic peak, to around 560 Ma. The data suggest two stages of monazite growth. The first generation of REE-enriched monazite grew during partial melting along the prograde path at around 570 Ma via the incongruent breakdown of apatite. Relatively REE-depleted rims, which have a pronounced negative europium anomaly, grew during melt crystallisation along the retrograde path at around 535 Ma. Our data show the rocks remained at suprasolidus temperatures for at least 35 million years and probably much longer, supporting a long-lived high-grade metamorphic history. The metamorphic conditions, timing and duration of the implied clockwise P-T-t path are similar to that previously established for other regions in peninsular India during the Ediacaran to Cambrian assembly of that part of the Gondwanan supercontinent.展开更多
Partially migmatized rocks, banded migmatites, augen-banded migmatites and gneissic migmatites are developed successively from Xindong to Yunlu, Gaozhou, Guangdong Province in the Yunkai Caledonian orogenic belt at th...Partially migmatized rocks, banded migmatites, augen-banded migmatites and gneissic migmatites are developed successively from Xindong to Yunlu, Gaozhou, Guangdong Province in the Yunkai Caledonian orogenic belt at the border between Guangdong and Guangxi. Mass-balance calculations, statistical analysis of the textural relations and mineralogical and geochemical studies of the migmatites and the study of the metamorphlc setting of the Yunlu area indicate that the migmatites in the study area were primarily formed by anatexis without remarkable introduction of foreign components such as K, Na and Si and removal of Ca, Fe, Mg, etc.展开更多
Extensive migmatization and large-scale post-collisional intrusions occurred in the Dabie orogen, east-central China,during the Early Cretaceous, characterized by distinct deformation preserved in migmatites in the No...Extensive migmatization and large-scale post-collisional intrusions occurred in the Dabie orogen, east-central China,during the Early Cretaceous, characterized by distinct deformation preserved in migmatites in the North Dabie Complex unit.The North Dabie Complex unit can be subdivided into three areas based on detailed field observations: the north of the Tiantangzhai pluton, the Luotian area and the Yuexi area. Banded migmatites crop out in the north of the Tiantangzhai pluton while anisotropically deformed migmatites occur in the Luotian area, and both types coexist in the Yuexi area. Microscopy reveals similar micro-structures are in migmatites from the north of the Tiantangzhai pluton, the Yuexi area and border of the Luotian area, while static recrystallization appears in migmatites from the core of the Luotian area. The Lattice-Preferred Orientation of dynamically recrystallized quartz grains in the migmatites are measured using electron backscattered diffraction,revealing prism slip or slip in migmatite from the north of the Tiantangzhai pluton and the Yuexi area and in one sample from the Luotian area. A Type I crossed girdle is developed in another sample from the Luotian area, indicating top-to-the-SE shearing that developed under greenschist facies conditions. Zircon U-Pb dates from four migmatites reveal that mainly Early Cretaceous ages are from the north of the Tiantangzhai pluton, only four Early Cretaceous ages are from the Luotian area, and all zircons from the Yuexi area record Indosinian metamorphic ages. Although zircon U-Pb results show multiple migmatization events, all samples record a migmatization age of about 132 Ma, suggesting an orogen-scale event at that time. The subsolidus deformation in migmatites indicates that deformation were soon after migmatization. Overall, this study shows that deformation in migmatites of the North Dabie Complex unit occurred somewhat later than the migmatization(132 Ma) at about 131 Ma. The most likely mechanism for thinning of the thickened crust in the Dabie orogen involved removal of the upper along the detachment fault and ductile adjustment of lower crust during development of the North Dabie metamorphic core complex.展开更多
On the basis of the detailed field work, compositions and contents of plagioclase and K - feldspar,determination of ordering degree, statistical analysis of plagioclase elongation index, mass-balance calculation and m...On the basis of the detailed field work, compositions and contents of plagioclase and K - feldspar,determination of ordering degree, statistical analysis of plagioclase elongation index, mass-balance calculation and mineral spatial distribution and geochemistry, it is concluded that the migmatites in the Dabie complex are characterized by the presence of thermocenters. There are regular changes in mineral character in the migmatites from the centers outwards. The dominant genetic mechanism is anatexis and metasomatism, whose intensities decrease from the centers outwards. Finally, according to the simulated experiment on Liesegang' s rings and non-linear dynamics (dissipative structure theory), the dynamic mechanism of migmatization is profoundly expouded as consisting of the early-stage metasomatism induced by the thermal anomaly, the cardinal-stage anatexis induced by the early-stage matasomatism and finally the last-stage post-anatexis metasomatism.展开更多
The geology of the Zango-Daji area was investigated petrographically and geochemically to determine the study area’s rock types and mineralization potential.The study area is underlain by rocks of the basement comple...The geology of the Zango-Daji area was investigated petrographically and geochemically to determine the study area’s rock types and mineralization potential.The study area is underlain by rocks of the basement complex characterized by hilly and undulating rocks,which include granitic gneiss,migmatite gneiss,biotite hornblende granite gneiss,and pegmatites.Observation from the field shows that the study area is dominantly underlain by granitic gneiss.The granitic gneiss is dark grey,medium-coarse-grained,and characterized by weak foliation defined by the alignment of a streak of light and dark coloured minerals.They are widespread in the area constituting about 70%of rock types found in the study area.The average modal percentage of minerals in the rocks from petrographic studies shows that granitic gneiss had quartz 45%,plagioclase 10%,microcline 20%,hornblende 2%,biotite 10%,muscovite 5%,kyanite 8%and other minerals 5%.Also,the pegmatite of the study area has no evidence of mineralization;it contains minerals like quartz,feldspars(microcline and orthoclase),and micas(mostly muscovite).Geochemical analysis of the granitic gneiss of the study area shows that silica is by far the most abundant with a value of 53.5%,Na_(2)O value of 32.5%,Al_(2)O_(3),and k_(2)O of 6.1%and 4.0%,respectively.CaO value of 2.630%accounts for plagioclase feldspar in the granitic gneiss.The QAP diagram was used to determine the petrogenesis of the granitic gneiss.The plot shows the parent rock was a monzogranite with a low percentage of plagioclase in a thin section with a high percentage of quartz and alkali feldspar.The pegmatites of the study area are barren,as confirmed by the XRD result.展开更多
1 Introduction The Kangdian axis is an important polymetallic metallogenic belt in Southwest China,and it is also an area with a lot of hydrothermal uranium mineralization(Wang Hongjun,et al.,2009.The basic
This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mu...This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.展开更多
This contribution discusses about the rheological, kinematic and dynamic frameworks necessary to produce recumbent and upright folds from syn-orogenic granitic massifs that were formed during an early stage of magma g...This contribution discusses about the rheological, kinematic and dynamic frameworks necessary to produce recumbent and upright folds from syn-orogenic granitic massifs that were formed during an early stage of magma genesis related to the onset of a migmatitic dome. Syn-kinematic granitoids occurring within the high-grade infrastructure of the Padron migmatitic dome(NW Iberia) are deformed into largescale recumbent folds(D_2) that are later affected by upright folds(D_3). Petrostructural analysis of a selected area of this dome reveals that after a period of crustal thickening(D_1), NNW-directed extensional flow gave way to recumbent folds and penetrative axial plane foliation(S_2). Superimposed subhorizontal compression resulted in upright folds(D_3). A closer view into the dynamics of the dome allows exploring the factors that may condition the nucleation of folds with contrasting geometries during progressive deformation of molten continental crust. The formation of folds affecting syn-kinematic granitoids suggests a cooling metamorphic path in migmatitic domes. Active and passive folding mechanisms require a crystallizing(cooling) magma to nucleate folds. A more competent metamorphic host inhibits fold nucleation from much less competent magmas. As it crystallizes, magma becomes more rigid(competent),and approaches viscosity values of its host. Passive folding is favored when no significant competence contrast exists between magma and host, so this folding mechanism is more likely shortly after magma genesis and emplacement. In such conditions, and under dominant subhorizontal flow accompanied by flattening(D_2),passive folding would produce isoclinal recumbent geometries. Further magma cooling introduces a shift into the rheological behavior of partially molten crust. Thereon, crystallizing magma bodies would represent significant competence contrasts relative to their host. At this point, buckling is a more likely folding mechanism, and more regular, buckle folds re-fold previous structures after significant cooling. The geometry of resulting folds is upright due to dominant subhorizontal compression(D_3) at this stage.展开更多
Veins and dikes are often oriented subparallel to the axial surfaces of folds in the adjacent layered or foliated rocks.This implies an awkward situation,since veins would lay in planes close-to-parallel to the maximu...Veins and dikes are often oriented subparallel to the axial surfaces of folds in the adjacent layered or foliated rocks.This implies an awkward situation,since veins would lay in planes close-to-parallel to the maximum stretching axis.A series of geometric models have been conceived in order to gain insight into the possible mechanisms for their formation.The models are based on the analysis of a varied selection of field structures and on the review of similar structures in the existing literature.A first categorization consists on distinguishing between axial-planar veins achieved by either progressive or polyphase deformation.Five models of axial-planar veins resulting from progressive deformation are described and discussed:(1) fold-related veins associated with the standard folding mechanisms,(2) fracture arrays localized along the short limbs of folds(asymmetric fold-related veins),(3) folds associated with rotation of extension veins(vein-related folds),(4) high strain and transposition of early veins,and(5) high strain and late veins parallel to axial planar foliations(axial planar foliation-related veins).The axial planar geometry is achieved through variable amounts of progressive rotational strain,except in model 5,in which the co-planarity is acquired at the time of vein intrusion.The possibility for axial-planar veins to have developed in two distinct phases in the context of polyphase or polyorogenic tectonics has also been explored and discussed.This study contributes to a better understanding of the intriguing interplays between deformation,metamorphic and magmatic processes in orogenic belts.展开更多
The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist...The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist and metabasitic rocks. The mineral assemblage of psammitic schist is muscovite + biotite + feldspar + quartz ± tourmaline ± titanite ± sillimanite and that of metabasitic rocks is amphibole + plagioclase + biotite ± apatite ± magnetite ± pyroxene ± garnet ± quartz. The migmatitic rock consists of leucosome and restite of various volume proportions; the former consists of muscovite + alkaline feldspar + quartz ± garnet ± plagioclase while the latter is either fragments of psammitic schist or those of metabasitic rock. The crystalline limestone consists of calcite that has been partly replaced by olivine. The olivine was subsequently altered to serpentine. Weak deformations as indicated by cleavages and fractures were imposed prominently on the psammitic schists, occasionally on metabasitic rocks, but not on migmatitic rocks. The basement experienced metamorphism up to temperature 606-778± and pressure 4.8-6.1 kbar (0.48-0.61 GPa), equivalent to amphibolite-granulite facies. The peak of the metamorphism is marked by a migmatization which occurred at several localities along the studied route 587-535 Ma ago. The basement also recorded a retrograde metamorphism of greenschist facies, during which biotite, garnet, amphibole, and pyroxene were partly altered to chlorite.展开更多
There are some different opinions on the formation of striped migmatite. Many striped migmatites are distributed around the plutonic rocks in the core of hot dome in nature. This shows that the pressure of intrusive r...There are some different opinions on the formation of striped migmatite. Many striped migmatites are distributed around the plutonic rocks in the core of hot dome in nature. This shows that the pressure of intrusive rocks to wall rocks must play an important role in the formation of stripes. This paper, at first, discusses the effects of directional pressure (i. e. compressive stress from intrusive rock to wall rock) on particle migration and crystallization, and the physical mechanism of Ostwald maturation and its adjusting effect in crystalline growth. And then, on the basic principles of physics and chemistry, we lay down the stochastic evolutional rules of the formation of crystal nucleus, diffusion, crystallization and dissolution of leucosome (melt) particles; and,neglecting other restrictive conditions, we build an idealizedly simplified two-dimensional model of stochastic cellular automaton for the recrystallization of metamorphic rock under directional pressure, and realize it by writing a program of Windows on PC. Theoretical analyses and computer simulations show that, at the beginning, the free particles of leucosome are initially even distributed in the system and form many crystal nucleus ; then, the anisotropies of diffusion, crystallization and dissolution caused by the directional pressure together with the mechanisms of Ostwald maturation can make the nucleus successively grow to form lenses, unevenly disconnected stripes, and layer-stripe structure, which correspond to low, medium and high grades of metamorphism and migmatization, respectively; that is, the effect of the pressure of intrusive rock to wall rock alone can form streaked structure in migmatite. Moreover, cellular automaton, adopted in this paper, is a kind of discrete and local grid dynamic model, and is extremely suitable for simulating the evolution of spatiotemporal structure of real systems and analyzing micro-mechanism creating complex macro-phenomenon. We believe that cellular automata will have broad applications in the geosciences which is full of complicated natural phenomena.展开更多
A popular hypothesis of in situ transformation of amphibolite facies gneisses to patchy charnockites by CO2 influx from mantle was proposed primarily from the Kabbaldurga quarries in South Karnataka and subsequently r...A popular hypothesis of in situ transformation of amphibolite facies gneisses to patchy charnockites by CO2 influx from mantle was proposed primarily from the Kabbaldurga quarries in South Karnataka and subsequently reported from several south Indian localities. However, presence of abundant mafic granulite enclaves in Kabbaldurga and its neighborhood and its implications in relation to patchy charnockite genesis were not discussed. In these quarries patchy charnockites occur in various modes and associations. Some of these patches do occupy structural weak zones, such as shear bands and fold noses in the migmatitic gneisses, but many of the patchy charnockite bodies occur as branching veins transecting the gneissic foliation and hence do not account for fluid pathways. Most importantly, charnockitic leucosomes at margins of mafic granulite enclaves and charnockitic veins within some mafic granulite enclaves indicate a close genetic link between them via dehydration partial melting. This is further corroborated by trace element distribution between them. Dehydration partial melting in mafic rocks in a migmatite terrain such as Kabbaldurga, can explain all the different modes of the patchy charnockites as various stages of segregation and mobility relative to deformation. Abundant mafic granulite enclaves and field features suggesting a relatively late origin of the patchy charnockites, are compelling evidence against the notion of a transition zone. Mantle derivation age of the mafic source rocks (protoliths of mafic granulites) at Kabbaldurga at 3.08 ± 0.08 Ga with small positive ? values is virtually identical to the source of the massive charnockite of Karnataka craton at 3.08 Ga. This could imply a widespread mafic magmatism in South India around 3.0 Ga.展开更多
The petrographic and structural study of Gbowé (Grand-Béréby) formations located in the SASCA domain (South-West of Côte d’Ivoire) revealed migmatitic paragneisses. For an in-depth understandin...The petrographic and structural study of Gbowé (Grand-Béréby) formations located in the SASCA domain (South-West of Côte d’Ivoire) revealed migmatitic paragneisses. For an in-depth understanding of the petrographic, structural and metamorphic characteristics, six (6) thin sections were made from these paragneisses. These gneisses are characterized by paleosomes and neosomes (leucosome and melanosome), consisting of quartz, garnet, plagioclase, biotite, cordierite, sillimanite, myrmekite and microcline. The mineralogical assemblage thus described indicates a retrograde metamorphism (transition from granulitic facies to amphibolitic facies). The structural and microstructural study identified two types of deformation (ductile and brittle). The ductile deformation is characterized by phases D1 (NE-SW flattening) and D2 (NW-SE flattening), materialized by foliations (N140˚, N050˚), folds (asymmetrical folds, similar folds, concentric folds, ptymatic folds) and boudins. Fracture schistosity and fold fracture schistosity are characteristic of the brittle deformation (phase D3). The microstructural study coupled with the metamorphic study shows that the deformations had an impact on the texture of the minerals (recrystallization and mineral reactions). It also allowed giving the paragenesis of phases D1 and D2. The D1 phase is characterized by garnet1, biotite1, quartz1, sillimanite1 and cordierite1 and the D2 phase is characterized by garnet1, quartz2, sillimanite2, biotite2, garnet2 and orthose2. These parageneses thus highlighted bear witness to a polydeformation and polymorphism that affects the study area.展开更多
Seismic anisotropy originating within the continental crust is commonly used to determine the deformation and kinematic flow within active orogens and is attributed to regionally oriented mica or hornblende grains.How...Seismic anisotropy originating within the continental crust is commonly used to determine the deformation and kinematic flow within active orogens and is attributed to regionally oriented mica or hornblende grains.However,naturally deformed rocks usually contain compositional layers(e.g.,parallel compositional banding).It is necessary to understand how both varying mineral contents and differing intensities of compositional layering influence the seismic properties of the deep crust.In this study,we analyzed the seismic response of migmatitic amphibolite with compositional banding structures.We present the microstructures,fabrics,calculated seismic velocities,and seismic anisotropies of mylonitic amphibolite from a horizontal shear layer preserved within the Ailao Shan-Red River shear zone,southwestern Yunnan,China.The investigated sample is characterized by pronounced centimeter-scale compositional banding.The microstructures and fabrics suggest that migmatitic amphibolite rocks within deep crust may delineate regions of deformation-assisted,channelized,reactive,porous melt flow.The origin of compositional banding in the studied migmatitic amphibolite is attributed primarily to partial melting together with some horizontal shearing deformation.The microfabrics and structures investigated in this study are considered to be typical for the base of active horizontal shear layers in the deep crust of southeastern Tibet.Seismic responses are modeled by using crystal preferred orientations for minerals of the migmatitic amphibolite by applying the Voigt-Reuss-Hill homogenization method.Calculated P-wave and S-wave velocities are largely consistent in the various layers of the migmatite.However,seismic anisotropies of P-wave(AV_(p))and S-wave(AVs)are higher in the melanosomes(AV_(p)=5.6%,AV_(s)=6.83%)than those in the leucosomes and the whole rock(AV_(p)=4.2%–4.6%,AV_(s)=3.1%–3.2%).In addition,there is pronounced,S-wave splitting oblique to the foliation plane in the migmatitic amphibolite.The multiple parallel compositional layers generate marked variation in the geometry of the seismic anisotropy(Vs1 polarization)in the whole rock.Combined with the macroscale geographical orientation of fabrics in the Ailao Shan-Red River shear zone,these compositional banding effects are inferred to generate significant variations in the magnitude and orientation of seismic anisotropy,especially for shear-wave anisotropy(AV_(s))in the deep crust.Hence,our data suggest that layering of various origins(e.g.,shear layers,partial-melting layers,and compositional layers)represents a new potential source of anisotropy within the deep crust.展开更多
Zirconium is one of high field strength elements but its isotope behavior during geochemical processes is still uncertain because of the limited database.While Zr isotopes in magmatic rocks are often used to trace the...Zirconium is one of high field strength elements but its isotope behavior during geochemical processes is still uncertain because of the limited database.While Zr isotopes in magmatic rocks are often used to trace the evolution of magmas through fractional crystallization,it is intriguing how highly heterogeneous Zr isotopes were produced by the growth of zircon during crustal anatexis.We address this issue by in-situ zircon Zr isotope analyses of migmatites from two high-temperature metamorphic terranes in the South Lhasa zone and the North Dabie zone,respectively,in China.The results show highly variable δ^(94)Zr values from-0.30‰ to +0.81‰ and from-0.58‰ to +0.49‰,respectively.In addition to the relict zircon of magmatic origin,two types of newly-grown zircons were identified in terms of their occurrences,trace elements and δ^(94)Zr values.The peritectic zircon,mainly occurring in the in-situ leucosomes,exhibits the highest Nb-Ta-Hf-U contents and variably higher δ^(94)Zr values than those of the relict zircon.The anatectic zircon,mainly occurring in the leucocratic veins,shows higher Nb-Ta-Hf-U contents than and similar δ^(94)Zr values to those of the relict zircon.Model calculations demonstrate that the variable Zr isotope compositions of newly-grown zircons would result from decoupled release of Zr from zircon and non-zircon phases.The Zr supply of the peritectic zircon is mainly derived from the decomposition of Zr-bearing minerals in the in-situ anatectic melt(the non-zircon effect),whereas the Zr supply of the anatectic zircon is mainly from the dissolution of pre-existing zircons in the evolved melt(the zircon effect).The significant Zr isotope variations in the migmatites well illustrate the generation,migration and accumulation of the anatectic melts during the partial melting.Therefore,Zr isotopes can be used as a powerful means for distinguishing between the peritectic and anatectic zircons during crustal anatexis.展开更多
The petrographic characteristics of Jingshan "migmatitic granite" and the occurrence of the magmatic zircons indicate that the granite was formed by normal crystallization of felsic melts. All zircons in the...The petrographic characteristics of Jingshan "migmatitic granite" and the occurrence of the magmatic zircons indicate that the granite was formed by normal crystallization of felsic melts. All zircons in the granite have inherited cores and fine-scale oscillatory zoning rims of magmatic origin. It is realized that the granite was formed at 160.2±1.3 Ma through dating magmatic zircons. The generation of the granitic magma could be related to the lithospheric mantle and/or lower crust delamination after the ultrahigh pressure metamorphism (UHPM) in Triassic. Most inherited zircons yield the ages of 217.1±6.6 Ma, which is consistent with the peak UHPM in the Dabie-Sulu orogenic belt. Some of the inherited zircons (433-722 Ma) constitute a discordia line with the upper intercept age of 850+85/-68 Ma and a lower intercept age of 261+100/-140 Ma. These ages imply that the granite could be derived from the partial melting of the crustal materials of the South China Block that was intensively superimposed by the UHPM. The UHPM could be the reason for the major Pb loss at ±220 Ma.展开更多
Migmatization in Higher Himalayan Crystallines (HHC) results from anatexis. The widely distributed migmatites in HHC are an important clue to investigate the relationship be- tween anatexis and the origins of Higher H...Migmatization in Higher Himalayan Crystallines (HHC) results from anatexis. The widely distributed migmatites in HHC are an important clue to investigate the relationship be- tween anatexis and the origins of Higher Himalayan leucogranites (HHL), and to understand the effect of anatexis on crustal evolution during the post-collision period. We studied in detail the chemical features of three basic constituent parts of the migmatites, i.e. leucosome, mesosome and melanosome, and determined the K-Ar ages of leucosomes. Our studies indicate that type-I leucosome is the product of crystallization of melt generated by partial melting of mesosome at source region, but type-II leucosome and HHL probably underwent crystallization differentiation of plagioclase during melt aggregation and migration. The age of 22.67 Ma of Type-I leucosome, which is a little older than the beginning of MCT movement, indicates that anatexis may have played an important role in the formation of MCT. That the ages of type-II leucosome (ranging from 14.82 to 18.37 Ma) are consistent with that of HHL provides new chronological evidence for the relationship between migmatization and HHL. We obtained a very young age of 6.23 Ma of Type-II leucosome that provides new time constraint on magma activity in the central segment of Higher Himalayas.展开更多
文摘The Higher Himalayan Crystallines(HHC), in western Garhwal, Uttarakhand are located in a regionalscale intracontinental ductile shear zone(15-20 km wide) bounded by the Main Central Thrust at the base, and the South Tibetan Detachment System at the top. The migmatite zone in the centre has the highest grade of metamorphism in the NW Himalayas and show evidence of flowage. Zircons extracted from samples of metasediment, migmatite, biotite granite and in situ partial melt(tourmaline-bearing leucogranite) along the Bhagirathi Valley, preserve U-Pb isotopic evidence of magmatic history, magma source and effects of the Himalayan orogeny in the region. Three distinct periods of zircon growth in the leucogranite record the episodic influx of magma between 46 Ma and 20 Ma indicating a time span of more than 25 Ma between the onset of fluid-fluxed partial melting in the mid-crustal intracontinental shear zone and the emplacement of the magma into the upper crust in a post-collisional extensional setting. Metamorphic zircon growth was initiated about 46 Ma, when the partial melts were generated as the migmatite zone was exhumed.
文摘Higher Himalayan Crystalline(HHC) complex of the Sikkim Himalaya predominantly consists of high-grade pelitic migmatites.In this study,reaction textures,mineral/bulk rare earth elements (REE),trace element partition coefficients and trace element zoning profiles in garnet are used to demonstrate a complex petrogenetic process during crustal anatexis.With the help of equilibrium REE and trace element partitioning model,it is shown that strong enrichment of Effective Bulk Composition(EBC) is responsible for the zoning in garnet in these rocks.The data strongly support disequilibrium element partitioning and suggest that the anatectic melts associated with mafic selvedges are likely produced by disequilibrium melting because of fast melt segregation process.
基金Funding for analyses and fieldwork was provided through Australian Research Council(ARC)Discovery and DECRA projects DP0879330 and DE1201030(to CC)Future Fellowship Scheme#FT120100340(to ASC)+1 种基金the Australia-India Strategic Research Fund project#ST030046(to CC and ASC)support from Curtin University Strategic Research Funding
文摘Data from a migmatised metapelite raft enclosed within charnockite provide quantitative constraints on the pressure-temperature-time (P-T-t) evolution of the Nagercoil Block at the southernmost tip of peninsular India. An inferred peak metamorphic assemblage of garnet, K-feldspar, sillimanite, plagioclase, magnetite, ilmenite, spinel and melt is consistent with peak metamorphic pressures of 6-8 kbar and temperatures in excess of 900 ℃. Subsequent growth of cordierite and biotite record high-temperature retrograde decompression to around 5 kbar and 800 ℃. SHRIMP U-Pb dating of magmatic zircon cores suggests that the sedimentary protoliths were in part derived from felsic igneous rocks with Palae- oproterozoic crystallisation ages. New growth of metamorphic zircon on the rims of detrital grains constrains the onset of melt crystallisation, and the minimum age of the metamorphic peak, to around 560 Ma. The data suggest two stages of monazite growth. The first generation of REE-enriched monazite grew during partial melting along the prograde path at around 570 Ma via the incongruent breakdown of apatite. Relatively REE-depleted rims, which have a pronounced negative europium anomaly, grew during melt crystallisation along the retrograde path at around 535 Ma. Our data show the rocks remained at suprasolidus temperatures for at least 35 million years and probably much longer, supporting a long-lived high-grade metamorphic history. The metamorphic conditions, timing and duration of the implied clockwise P-T-t path are similar to that previously established for other regions in peninsular India during the Ediacaran to Cambrian assembly of that part of the Gondwanan supercontinent.
文摘Partially migmatized rocks, banded migmatites, augen-banded migmatites and gneissic migmatites are developed successively from Xindong to Yunlu, Gaozhou, Guangdong Province in the Yunkai Caledonian orogenic belt at the border between Guangdong and Guangxi. Mass-balance calculations, statistical analysis of the textural relations and mineralogical and geochemical studies of the migmatites and the study of the metamorphlc setting of the Yunlu area indicate that the migmatites in the study area were primarily formed by anatexis without remarkable introduction of foreign components such as K, Na and Si and removal of Ca, Fe, Mg, etc.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41572186, 41541045)
文摘Extensive migmatization and large-scale post-collisional intrusions occurred in the Dabie orogen, east-central China,during the Early Cretaceous, characterized by distinct deformation preserved in migmatites in the North Dabie Complex unit.The North Dabie Complex unit can be subdivided into three areas based on detailed field observations: the north of the Tiantangzhai pluton, the Luotian area and the Yuexi area. Banded migmatites crop out in the north of the Tiantangzhai pluton while anisotropically deformed migmatites occur in the Luotian area, and both types coexist in the Yuexi area. Microscopy reveals similar micro-structures are in migmatites from the north of the Tiantangzhai pluton, the Yuexi area and border of the Luotian area, while static recrystallization appears in migmatites from the core of the Luotian area. The Lattice-Preferred Orientation of dynamically recrystallized quartz grains in the migmatites are measured using electron backscattered diffraction,revealing prism slip or slip in migmatite from the north of the Tiantangzhai pluton and the Yuexi area and in one sample from the Luotian area. A Type I crossed girdle is developed in another sample from the Luotian area, indicating top-to-the-SE shearing that developed under greenschist facies conditions. Zircon U-Pb dates from four migmatites reveal that mainly Early Cretaceous ages are from the north of the Tiantangzhai pluton, only four Early Cretaceous ages are from the Luotian area, and all zircons from the Yuexi area record Indosinian metamorphic ages. Although zircon U-Pb results show multiple migmatization events, all samples record a migmatization age of about 132 Ma, suggesting an orogen-scale event at that time. The subsolidus deformation in migmatites indicates that deformation were soon after migmatization. Overall, this study shows that deformation in migmatites of the North Dabie Complex unit occurred somewhat later than the migmatization(132 Ma) at about 131 Ma. The most likely mechanism for thinning of the thickened crust in the Dabie orogen involved removal of the upper along the detachment fault and ductile adjustment of lower crust during development of the North Dabie metamorphic core complex.
基金A project supported by the China National Natural Science Foundation(No.49070079)
文摘On the basis of the detailed field work, compositions and contents of plagioclase and K - feldspar,determination of ordering degree, statistical analysis of plagioclase elongation index, mass-balance calculation and mineral spatial distribution and geochemistry, it is concluded that the migmatites in the Dabie complex are characterized by the presence of thermocenters. There are regular changes in mineral character in the migmatites from the centers outwards. The dominant genetic mechanism is anatexis and metasomatism, whose intensities decrease from the centers outwards. Finally, according to the simulated experiment on Liesegang' s rings and non-linear dynamics (dissipative structure theory), the dynamic mechanism of migmatization is profoundly expouded as consisting of the early-stage metasomatism induced by the thermal anomaly, the cardinal-stage anatexis induced by the early-stage matasomatism and finally the last-stage post-anatexis metasomatism.
文摘The geology of the Zango-Daji area was investigated petrographically and geochemically to determine the study area’s rock types and mineralization potential.The study area is underlain by rocks of the basement complex characterized by hilly and undulating rocks,which include granitic gneiss,migmatite gneiss,biotite hornblende granite gneiss,and pegmatites.Observation from the field shows that the study area is dominantly underlain by granitic gneiss.The granitic gneiss is dark grey,medium-coarse-grained,and characterized by weak foliation defined by the alignment of a streak of light and dark coloured minerals.They are widespread in the area constituting about 70%of rock types found in the study area.The average modal percentage of minerals in the rocks from petrographic studies shows that granitic gneiss had quartz 45%,plagioclase 10%,microcline 20%,hornblende 2%,biotite 10%,muscovite 5%,kyanite 8%and other minerals 5%.Also,the pegmatite of the study area has no evidence of mineralization;it contains minerals like quartz,feldspars(microcline and orthoclase),and micas(mostly muscovite).Geochemical analysis of the granitic gneiss of the study area shows that silica is by far the most abundant with a value of 53.5%,Na_(2)O value of 32.5%,Al_(2)O_(3),and k_(2)O of 6.1%and 4.0%,respectively.CaO value of 2.630%accounts for plagioclase feldspar in the granitic gneiss.The QAP diagram was used to determine the petrogenesis of the granitic gneiss.The plot shows the parent rock was a monzogranite with a low percentage of plagioclase in a thin section with a high percentage of quartz and alkali feldspar.The pegmatites of the study area are barren,as confirmed by the XRD result.
基金supported by the China Nuclear Industry Geological Bureau Foundation (No.201637 and 201638)
文摘1 Introduction The Kangdian axis is an important polymetallic metallogenic belt in Southwest China,and it is also an area with a lot of hydrothermal uranium mineralization(Wang Hongjun,et al.,2009.The basic
基金support of the National Natural Science Foundation of China (Grant Nos.51379007,41130742)the support of the Chinese Fundamental Research (973)Program through the Grant No.2013CB036006
文摘This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.
基金Financial support has been provided by Instituto Geológico y Minero de Espana(Project IGME 2281)by Ministerio de Economía,Industria y Competitividad of Spain(Project No.CGL2016-76438-P)contribution to IGCP project 648(Supercontinent Cycle and Global Geodynamics)
文摘This contribution discusses about the rheological, kinematic and dynamic frameworks necessary to produce recumbent and upright folds from syn-orogenic granitic massifs that were formed during an early stage of magma genesis related to the onset of a migmatitic dome. Syn-kinematic granitoids occurring within the high-grade infrastructure of the Padron migmatitic dome(NW Iberia) are deformed into largescale recumbent folds(D_2) that are later affected by upright folds(D_3). Petrostructural analysis of a selected area of this dome reveals that after a period of crustal thickening(D_1), NNW-directed extensional flow gave way to recumbent folds and penetrative axial plane foliation(S_2). Superimposed subhorizontal compression resulted in upright folds(D_3). A closer view into the dynamics of the dome allows exploring the factors that may condition the nucleation of folds with contrasting geometries during progressive deformation of molten continental crust. The formation of folds affecting syn-kinematic granitoids suggests a cooling metamorphic path in migmatitic domes. Active and passive folding mechanisms require a crystallizing(cooling) magma to nucleate folds. A more competent metamorphic host inhibits fold nucleation from much less competent magmas. As it crystallizes, magma becomes more rigid(competent),and approaches viscosity values of its host. Passive folding is favored when no significant competence contrast exists between magma and host, so this folding mechanism is more likely shortly after magma genesis and emplacement. In such conditions, and under dominant subhorizontal flow accompanied by flattening(D_2),passive folding would produce isoclinal recumbent geometries. Further magma cooling introduces a shift into the rheological behavior of partially molten crust. Thereon, crystallizing magma bodies would represent significant competence contrasts relative to their host. At this point, buckling is a more likely folding mechanism, and more regular, buckle folds re-fold previous structures after significant cooling. The geometry of resulting folds is upright due to dominant subhorizontal compression(D_3) at this stage.
基金Thanks to Jordi Carreras for giving insightful advice during article preparation and to Claudio Rosenberg for sharing his picture in Fig.13e.I am also particularly grateful to two anonymous reviewers for very constructive reviews that have greatly improved the paper
文摘Veins and dikes are often oriented subparallel to the axial surfaces of folds in the adjacent layered or foliated rocks.This implies an awkward situation,since veins would lay in planes close-to-parallel to the maximum stretching axis.A series of geometric models have been conceived in order to gain insight into the possible mechanisms for their formation.The models are based on the analysis of a varied selection of field structures and on the review of similar structures in the existing literature.A first categorization consists on distinguishing between axial-planar veins achieved by either progressive or polyphase deformation.Five models of axial-planar veins resulting from progressive deformation are described and discussed:(1) fold-related veins associated with the standard folding mechanisms,(2) fracture arrays localized along the short limbs of folds(asymmetric fold-related veins),(3) folds associated with rotation of extension veins(vein-related folds),(4) high strain and transposition of early veins,and(5) high strain and late veins parallel to axial planar foliations(axial planar foliation-related veins).The axial planar geometry is achieved through variable amounts of progressive rotational strain,except in model 5,in which the co-planarity is acquired at the time of vein intrusion.The possibility for axial-planar veins to have developed in two distinct phases in the context of polyphase or polyorogenic tectonics has also been explored and discussed.This study contributes to a better understanding of the intriguing interplays between deformation,metamorphic and magmatic processes in orogenic belts.
文摘The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist and metabasitic rocks. The mineral assemblage of psammitic schist is muscovite + biotite + feldspar + quartz ± tourmaline ± titanite ± sillimanite and that of metabasitic rocks is amphibole + plagioclase + biotite ± apatite ± magnetite ± pyroxene ± garnet ± quartz. The migmatitic rock consists of leucosome and restite of various volume proportions; the former consists of muscovite + alkaline feldspar + quartz ± garnet ± plagioclase while the latter is either fragments of psammitic schist or those of metabasitic rock. The crystalline limestone consists of calcite that has been partly replaced by olivine. The olivine was subsequently altered to serpentine. Weak deformations as indicated by cleavages and fractures were imposed prominently on the psammitic schists, occasionally on metabasitic rocks, but not on migmatitic rocks. The basement experienced metamorphism up to temperature 606-778± and pressure 4.8-6.1 kbar (0.48-0.61 GPa), equivalent to amphibolite-granulite facies. The peak of the metamorphism is marked by a migmatization which occurred at several localities along the studied route 587-535 Ma ago. The basement also recorded a retrograde metamorphism of greenschist facies, during which biotite, garnet, amphibole, and pyroxene were partly altered to chlorite.
文摘There are some different opinions on the formation of striped migmatite. Many striped migmatites are distributed around the plutonic rocks in the core of hot dome in nature. This shows that the pressure of intrusive rocks to wall rocks must play an important role in the formation of stripes. This paper, at first, discusses the effects of directional pressure (i. e. compressive stress from intrusive rock to wall rock) on particle migration and crystallization, and the physical mechanism of Ostwald maturation and its adjusting effect in crystalline growth. And then, on the basic principles of physics and chemistry, we lay down the stochastic evolutional rules of the formation of crystal nucleus, diffusion, crystallization and dissolution of leucosome (melt) particles; and,neglecting other restrictive conditions, we build an idealizedly simplified two-dimensional model of stochastic cellular automaton for the recrystallization of metamorphic rock under directional pressure, and realize it by writing a program of Windows on PC. Theoretical analyses and computer simulations show that, at the beginning, the free particles of leucosome are initially even distributed in the system and form many crystal nucleus ; then, the anisotropies of diffusion, crystallization and dissolution caused by the directional pressure together with the mechanisms of Ostwald maturation can make the nucleus successively grow to form lenses, unevenly disconnected stripes, and layer-stripe structure, which correspond to low, medium and high grades of metamorphism and migmatization, respectively; that is, the effect of the pressure of intrusive rock to wall rock alone can form streaked structure in migmatite. Moreover, cellular automaton, adopted in this paper, is a kind of discrete and local grid dynamic model, and is extremely suitable for simulating the evolution of spatiotemporal structure of real systems and analyzing micro-mechanism creating complex macro-phenomenon. We believe that cellular automata will have broad applications in the geosciences which is full of complicated natural phenomena.
文摘A popular hypothesis of in situ transformation of amphibolite facies gneisses to patchy charnockites by CO2 influx from mantle was proposed primarily from the Kabbaldurga quarries in South Karnataka and subsequently reported from several south Indian localities. However, presence of abundant mafic granulite enclaves in Kabbaldurga and its neighborhood and its implications in relation to patchy charnockite genesis were not discussed. In these quarries patchy charnockites occur in various modes and associations. Some of these patches do occupy structural weak zones, such as shear bands and fold noses in the migmatitic gneisses, but many of the patchy charnockite bodies occur as branching veins transecting the gneissic foliation and hence do not account for fluid pathways. Most importantly, charnockitic leucosomes at margins of mafic granulite enclaves and charnockitic veins within some mafic granulite enclaves indicate a close genetic link between them via dehydration partial melting. This is further corroborated by trace element distribution between them. Dehydration partial melting in mafic rocks in a migmatite terrain such as Kabbaldurga, can explain all the different modes of the patchy charnockites as various stages of segregation and mobility relative to deformation. Abundant mafic granulite enclaves and field features suggesting a relatively late origin of the patchy charnockites, are compelling evidence against the notion of a transition zone. Mantle derivation age of the mafic source rocks (protoliths of mafic granulites) at Kabbaldurga at 3.08 ± 0.08 Ga with small positive ? values is virtually identical to the source of the massive charnockite of Karnataka craton at 3.08 Ga. This could imply a widespread mafic magmatism in South India around 3.0 Ga.
文摘The petrographic and structural study of Gbowé (Grand-Béréby) formations located in the SASCA domain (South-West of Côte d’Ivoire) revealed migmatitic paragneisses. For an in-depth understanding of the petrographic, structural and metamorphic characteristics, six (6) thin sections were made from these paragneisses. These gneisses are characterized by paleosomes and neosomes (leucosome and melanosome), consisting of quartz, garnet, plagioclase, biotite, cordierite, sillimanite, myrmekite and microcline. The mineralogical assemblage thus described indicates a retrograde metamorphism (transition from granulitic facies to amphibolitic facies). The structural and microstructural study identified two types of deformation (ductile and brittle). The ductile deformation is characterized by phases D1 (NE-SW flattening) and D2 (NW-SE flattening), materialized by foliations (N140˚, N050˚), folds (asymmetrical folds, similar folds, concentric folds, ptymatic folds) and boudins. Fracture schistosity and fold fracture schistosity are characteristic of the brittle deformation (phase D3). The microstructural study coupled with the metamorphic study shows that the deformations had an impact on the texture of the minerals (recrystallization and mineral reactions). It also allowed giving the paragenesis of phases D1 and D2. The D1 phase is characterized by garnet1, biotite1, quartz1, sillimanite1 and cordierite1 and the D2 phase is characterized by garnet1, quartz2, sillimanite2, biotite2, garnet2 and orthose2. These parageneses thus highlighted bear witness to a polydeformation and polymorphism that affects the study area.
基金supported by the National Natural Science Foundation of China(No.41772207)the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0703).
文摘Seismic anisotropy originating within the continental crust is commonly used to determine the deformation and kinematic flow within active orogens and is attributed to regionally oriented mica or hornblende grains.However,naturally deformed rocks usually contain compositional layers(e.g.,parallel compositional banding).It is necessary to understand how both varying mineral contents and differing intensities of compositional layering influence the seismic properties of the deep crust.In this study,we analyzed the seismic response of migmatitic amphibolite with compositional banding structures.We present the microstructures,fabrics,calculated seismic velocities,and seismic anisotropies of mylonitic amphibolite from a horizontal shear layer preserved within the Ailao Shan-Red River shear zone,southwestern Yunnan,China.The investigated sample is characterized by pronounced centimeter-scale compositional banding.The microstructures and fabrics suggest that migmatitic amphibolite rocks within deep crust may delineate regions of deformation-assisted,channelized,reactive,porous melt flow.The origin of compositional banding in the studied migmatitic amphibolite is attributed primarily to partial melting together with some horizontal shearing deformation.The microfabrics and structures investigated in this study are considered to be typical for the base of active horizontal shear layers in the deep crust of southeastern Tibet.Seismic responses are modeled by using crystal preferred orientations for minerals of the migmatitic amphibolite by applying the Voigt-Reuss-Hill homogenization method.Calculated P-wave and S-wave velocities are largely consistent in the various layers of the migmatite.However,seismic anisotropies of P-wave(AV_(p))and S-wave(AVs)are higher in the melanosomes(AV_(p)=5.6%,AV_(s)=6.83%)than those in the leucosomes and the whole rock(AV_(p)=4.2%–4.6%,AV_(s)=3.1%–3.2%).In addition,there is pronounced,S-wave splitting oblique to the foliation plane in the migmatitic amphibolite.The multiple parallel compositional layers generate marked variation in the geometry of the seismic anisotropy(Vs1 polarization)in the whole rock.Combined with the macroscale geographical orientation of fabrics in the Ailao Shan-Red River shear zone,these compositional banding effects are inferred to generate significant variations in the magnitude and orientation of seismic anisotropy,especially for shear-wave anisotropy(AV_(s))in the deep crust.Hence,our data suggest that layering of various origins(e.g.,shear layers,partial-melting layers,and compositional layers)represents a new potential source of anisotropy within the deep crust.
基金supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No.XDB41000000)the National Natural Science Foundation of China (Grant Nos.92155306,41822201)。
文摘Zirconium is one of high field strength elements but its isotope behavior during geochemical processes is still uncertain because of the limited database.While Zr isotopes in magmatic rocks are often used to trace the evolution of magmas through fractional crystallization,it is intriguing how highly heterogeneous Zr isotopes were produced by the growth of zircon during crustal anatexis.We address this issue by in-situ zircon Zr isotope analyses of migmatites from two high-temperature metamorphic terranes in the South Lhasa zone and the North Dabie zone,respectively,in China.The results show highly variable δ^(94)Zr values from-0.30‰ to +0.81‰ and from-0.58‰ to +0.49‰,respectively.In addition to the relict zircon of magmatic origin,two types of newly-grown zircons were identified in terms of their occurrences,trace elements and δ^(94)Zr values.The peritectic zircon,mainly occurring in the in-situ leucosomes,exhibits the highest Nb-Ta-Hf-U contents and variably higher δ^(94)Zr values than those of the relict zircon.The anatectic zircon,mainly occurring in the leucocratic veins,shows higher Nb-Ta-Hf-U contents than and similar δ^(94)Zr values to those of the relict zircon.Model calculations demonstrate that the variable Zr isotope compositions of newly-grown zircons would result from decoupled release of Zr from zircon and non-zircon phases.The Zr supply of the peritectic zircon is mainly derived from the decomposition of Zr-bearing minerals in the in-situ anatectic melt(the non-zircon effect),whereas the Zr supply of the anatectic zircon is mainly from the dissolution of pre-existing zircons in the evolved melt(the zircon effect).The significant Zr isotope variations in the migmatites well illustrate the generation,migration and accumulation of the anatectic melts during the partial melting.Therefore,Zr isotopes can be used as a powerful means for distinguishing between the peritectic and anatectic zircons during crustal anatexis.
基金supported by MST(Grant No.TG1999075502)the National Natural Science Foundation of China(Grant No.40172030)Jilin University(Grant No.2002CX004).
文摘The petrographic characteristics of Jingshan "migmatitic granite" and the occurrence of the magmatic zircons indicate that the granite was formed by normal crystallization of felsic melts. All zircons in the granite have inherited cores and fine-scale oscillatory zoning rims of magmatic origin. It is realized that the granite was formed at 160.2±1.3 Ma through dating magmatic zircons. The generation of the granitic magma could be related to the lithospheric mantle and/or lower crust delamination after the ultrahigh pressure metamorphism (UHPM) in Triassic. Most inherited zircons yield the ages of 217.1±6.6 Ma, which is consistent with the peak UHPM in the Dabie-Sulu orogenic belt. Some of the inherited zircons (433-722 Ma) constitute a discordia line with the upper intercept age of 850+85/-68 Ma and a lower intercept age of 261+100/-140 Ma. These ages imply that the granite could be derived from the partial melting of the crustal materials of the South China Block that was intensively superimposed by the UHPM. The UHPM could be the reason for the major Pb loss at ±220 Ma.
基金supports from the National Natural Science Foundation of China(Grant No.40472113)the National Key Basic Research and Development Program of China(Grant No.2004CB418405)the Foundation of Earthquake Sciences of China Earthquake Administration.
文摘Migmatization in Higher Himalayan Crystallines (HHC) results from anatexis. The widely distributed migmatites in HHC are an important clue to investigate the relationship be- tween anatexis and the origins of Higher Himalayan leucogranites (HHL), and to understand the effect of anatexis on crustal evolution during the post-collision period. We studied in detail the chemical features of three basic constituent parts of the migmatites, i.e. leucosome, mesosome and melanosome, and determined the K-Ar ages of leucosomes. Our studies indicate that type-I leucosome is the product of crystallization of melt generated by partial melting of mesosome at source region, but type-II leucosome and HHL probably underwent crystallization differentiation of plagioclase during melt aggregation and migration. The age of 22.67 Ma of Type-I leucosome, which is a little older than the beginning of MCT movement, indicates that anatexis may have played an important role in the formation of MCT. That the ages of type-II leucosome (ranging from 14.82 to 18.37 Ma) are consistent with that of HHL provides new chronological evidence for the relationship between migmatization and HHL. We obtained a very young age of 6.23 Ma of Type-II leucosome that provides new time constraint on magma activity in the central segment of Higher Himalayas.