In order to constrain temperature during subduction and subsequent exhumation of fel- sic continental crust, we carried out a Ti-in-zircon thermometer coupled with zircon internal structure and U-Pb age on migmatitic ...In order to constrain temperature during subduction and subsequent exhumation of fel- sic continental crust, we carried out a Ti-in-zircon thermometer coupled with zircon internal structure and U-Pb age on migmatitic gneisses from the Weihai region in the Sulu ultra-high pres- sure (UHP) metamorphic terrane, eastern China. The Weihai migmatitic gneisses are composed of in- tercalated compositional layers of melanosome and plagioclase (Pl)-rich lencosome and K-feldspar (Kfs)-rich pegmatite veins. Four stages of zircon growth were recognized in the Weihai migmatitic gneisses. They successively recorded informations of protolith, prograde metamorphism, decompres- sional partial melting during early stage exhumation and subsequent fractional crystallization of pri- mary melt during later stage cooling exhumation. The inherited cores in zircon from the melanosome and the Pl-rich leucosome suggest that the pro- tolith of the migmatitic gneiss is Mid- Neoproterozoic (-780 Ma) magmatic rock. Metamorphic zircons with concordant ages ranging from 243 to 256 Ma occur as over- growth mantles on the protolith magmatic zir- con cores. The estimated growth temperatures (625-717 "C) of the metamorphic zircons have a negative correlation with their ages, indicating a progressive metamorphism in HP eciogite-facies condition during subduction. Zircon recrystal- lized rims (228-2 Ma) in the PI-rich ieucosome layers provide the lower limit of the decompress-sional partial melting time during exhumation. The ages from 228^-2 to 219~2 Ma recorded in the Pl-rich leucosome and the Kfs-rich pegmatite vein, respectively, suggest the duration of the fractional crystallization of primary melt during exhumation. The calculated growth temperatures of the zircon rims from the Pl-rich leucosome range from 858 to 739 , and the temperatures of new growth zircon grains (219±2 Ma) in Kfs-rich vein are between 769 and 529 . The estimated temperatures have a positive correlation with ages from the Pl-rich leucosome to the Kfs-rich pegmatite vein, strongly indi- cating that a process of fractional crystallization of the partial melt during exhumation.展开更多
基金supported by the National Key Basic Research Program of China (No.2009CB825001)the National Natural Science Foundation of China (Nos.40603002,41072046,and 41090371)the Fundamental Research Funds for the Central Universities,China University of Geosciences,Wuhan (No.CUG120121)
文摘In order to constrain temperature during subduction and subsequent exhumation of fel- sic continental crust, we carried out a Ti-in-zircon thermometer coupled with zircon internal structure and U-Pb age on migmatitic gneisses from the Weihai region in the Sulu ultra-high pres- sure (UHP) metamorphic terrane, eastern China. The Weihai migmatitic gneisses are composed of in- tercalated compositional layers of melanosome and plagioclase (Pl)-rich lencosome and K-feldspar (Kfs)-rich pegmatite veins. Four stages of zircon growth were recognized in the Weihai migmatitic gneisses. They successively recorded informations of protolith, prograde metamorphism, decompres- sional partial melting during early stage exhumation and subsequent fractional crystallization of pri- mary melt during later stage cooling exhumation. The inherited cores in zircon from the melanosome and the Pl-rich leucosome suggest that the pro- tolith of the migmatitic gneiss is Mid- Neoproterozoic (-780 Ma) magmatic rock. Metamorphic zircons with concordant ages ranging from 243 to 256 Ma occur as over- growth mantles on the protolith magmatic zir- con cores. The estimated growth temperatures (625-717 "C) of the metamorphic zircons have a negative correlation with their ages, indicating a progressive metamorphism in HP eciogite-facies condition during subduction. Zircon recrystal- lized rims (228-2 Ma) in the PI-rich ieucosome layers provide the lower limit of the decompress-sional partial melting time during exhumation. The ages from 228^-2 to 219~2 Ma recorded in the Pl-rich leucosome and the Kfs-rich pegmatite vein, respectively, suggest the duration of the fractional crystallization of primary melt during exhumation. The calculated growth temperatures of the zircon rims from the Pl-rich leucosome range from 858 to 739 , and the temperatures of new growth zircon grains (219±2 Ma) in Kfs-rich vein are between 769 and 529 . The estimated temperatures have a positive correlation with ages from the Pl-rich leucosome to the Kfs-rich pegmatite vein, strongly indi- cating that a process of fractional crystallization of the partial melt during exhumation.