Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a...Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents,thus guiding the exploration of modern seafloor sulfides.Considering the MidAtlantic Ridge 20°N–24°N(NMAR)and North Chile Rise(NCR)as examples,fault elements such as Fault Spacing(?S)and Fault Heave(?X)can be identified and quantitatively measured.The methods used include Fourier filtering of the multi-beam bathymetry data,in combination with measurements of the topographic slope,curvature,and slope aspect patterns.According to the Sequential Faulting Model of mid-ocean ridges,the maximal migration distance of an active fault on either side of mid-ocean ridges—that is,the distribution range of active faults—can be measured.Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km(the distance is larger at the center than at the ends of this segment),and at the NCR,the distribution range of active faults is 0.38–1.6 km.The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply.In the NCR study area,where there is an abundant magma input,the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness.Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges(M)value,and in the study area of the NMAR,there is insufficient magmatism,and the number of faults may be controlled by both lithospheric thickness and magma supply,leading to a less obvious positive correlation between the distribution range of active faults and M.展开更多
The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER pr...The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER process owing to their high intrinsic activities and tailorable properties.Fe ions in perovskite oxides have been proved to be a highly catalytic element for OER,while some Fe-based perovskites such as SrTi_(0.8)Fe_(0.2)O_(3-δ)(STF) and La_(0.66)Ti_(0.8)Fe_(0.2)O_(3-δ)(LTF) exhibit inferior OER activity.Yet the essential reason is still unclear and the effective method to promote the activity of such perovskite is also lacking.Herein,an in-situ exsolution strategy was proposed to boost the OER by migrating Fe from the bulk to the surface.Significantly enhanced OER activity was achieved on STF and LTF perovskites with surfacedecorated oxygen vacancies and Fe nanoparticles.In addition,theoretical calculation confirmed that the oxygen vacancies and Fe nanoparticle on surface could lower the overpotential of OER by facilitating the adsorption of OH^(-).From this study,migration of the active elements in perovskite is found to be an effective strategy to increase the quantity and activity of active sites,providing new insights and understanding for designing efficient OER catalysts.展开更多
基金supported by the grant of China Ocean Mineral Resources R&D Association(DY135-S2-1-01)
文摘Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents,thus guiding the exploration of modern seafloor sulfides.Considering the MidAtlantic Ridge 20°N–24°N(NMAR)and North Chile Rise(NCR)as examples,fault elements such as Fault Spacing(?S)and Fault Heave(?X)can be identified and quantitatively measured.The methods used include Fourier filtering of the multi-beam bathymetry data,in combination with measurements of the topographic slope,curvature,and slope aspect patterns.According to the Sequential Faulting Model of mid-ocean ridges,the maximal migration distance of an active fault on either side of mid-ocean ridges—that is,the distribution range of active faults—can be measured.Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km(the distance is larger at the center than at the ends of this segment),and at the NCR,the distribution range of active faults is 0.38–1.6 km.The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply.In the NCR study area,where there is an abundant magma input,the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness.Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges(M)value,and in the study area of the NMAR,there is insufficient magmatism,and the number of faults may be controlled by both lithospheric thickness and magma supply,leading to a less obvious positive correlation between the distribution range of active faults and M.
基金financial supports from the Youth Innovation Fund of Dalian Institute of Chemical Physics (DICP I202126)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB17020400)。
文摘The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER process owing to their high intrinsic activities and tailorable properties.Fe ions in perovskite oxides have been proved to be a highly catalytic element for OER,while some Fe-based perovskites such as SrTi_(0.8)Fe_(0.2)O_(3-δ)(STF) and La_(0.66)Ti_(0.8)Fe_(0.2)O_(3-δ)(LTF) exhibit inferior OER activity.Yet the essential reason is still unclear and the effective method to promote the activity of such perovskite is also lacking.Herein,an in-situ exsolution strategy was proposed to boost the OER by migrating Fe from the bulk to the surface.Significantly enhanced OER activity was achieved on STF and LTF perovskites with surfacedecorated oxygen vacancies and Fe nanoparticles.In addition,theoretical calculation confirmed that the oxygen vacancies and Fe nanoparticle on surface could lower the overpotential of OER by facilitating the adsorption of OH^(-).From this study,migration of the active elements in perovskite is found to be an effective strategy to increase the quantity and activity of active sites,providing new insights and understanding for designing efficient OER catalysts.