The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engin...The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes.Electron migration modes within HEAs as manipulated by the electronegativity,valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles.Herein,enlightened by skin-like effect,a reformative carbothermal shock method using carbonized cellulose paper(CCP)as carbon supporter is used to preserve the oxygencontaining functional groups(O·)of carbonized cellulose fibers(CCF).Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·.Meanwhile,the electron migration mode of switchable electronrich sites promotes the orientation polarization of anisotropic equivalent dipoles.By virtue of the reinforcement strategy,CCP/HEAs composite prepared by 35%molar ratio of Mn element(CCP/HEAs-Mn_(2.15))achieves efficient electromagnetic wave(EMW)absorption of−51.35 dB at an ultra-thin thickness of 1.03 mm.The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations,which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices(e.g.,ultra-wideband bandpass filter).展开更多
Impacts of microenvironments on cell migration have been reported in various interaction modes.A rapid tumor metastasis occurs along topological interfaces in vivo,such as the interface between the blood vessels and n...Impacts of microenvironments on cell migration have been reported in various interaction modes.A rapid tumor metastasis occurs along topological interfaces in vivo,such as the interface between the blood vessels and nerves.In this work,we culture MDA-MB231 cells at dish-liquid,dish-hydrogel,and hydrogel-liquid interfaces,respectively,to study how these different interfaces influence cell dynamics and morphology.Our results show that the migration mode of cells changes from an amoeboid motion to a mesenchymal motion but their speed do not change obviously if the interface changes from hydrogel-liquid to dish-liquid.In contrast,the migration mode of cells at a dish-hydrogel interface maintains as a mesenchymal motion,whereas their speed increases significantly.展开更多
A theoretical investigation was conducted of laminar fully developed mixed convection of alumina-water nanofluid through a vertical annulus, to improve its heating/cooling performance. We focused on con- trolling the ...A theoretical investigation was conducted of laminar fully developed mixed convection of alumina-water nanofluid through a vertical annulus, to improve its heating/cooling performance. We focused on con- trolling the nanoparticle migration and studying how it affected the heat transfer rate and pressure drop. Because the nanoparticles have very small dimensions, we only considered Brownian motion and ther- mophoretic diffusivity as the main causes of nanoparticle migration. Because thermophoresis is very sensitive to temperature gradients, we imposed various temperature gradients using asymmetric heat- ing. Considering hydrodynamically and thermally fully developed flow, the governing equations were reduced to two-point ordinary boundary value differential equations and were solved numerically. The imposed thermal asymmetry changed the direction of nanoparticle migration and distorted the velocity, temperature, and nanoparticle concentration profiles. Moreover, we found optimum values for the radius ratio (ζ) and heat flux ratio (ε); with these optimum values, the nanofluid enhanced the efficacy of the system.展开更多
基金Financial support from the National Natural Science Foundation of China(52372289,52102368,52231007,12327804,T2321003,22088101,22178037 and U22A20424)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020A1515110905)+1 种基金Guangdong Special Fund for key Areas(20237DZX3042)Shenzhen Stable Support Project,Liaoning Revitalization Talents Program(XLYC2002114)are highly appreciated.
文摘The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes.Electron migration modes within HEAs as manipulated by the electronegativity,valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles.Herein,enlightened by skin-like effect,a reformative carbothermal shock method using carbonized cellulose paper(CCP)as carbon supporter is used to preserve the oxygencontaining functional groups(O·)of carbonized cellulose fibers(CCF).Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·.Meanwhile,the electron migration mode of switchable electronrich sites promotes the orientation polarization of anisotropic equivalent dipoles.By virtue of the reinforcement strategy,CCP/HEAs composite prepared by 35%molar ratio of Mn element(CCP/HEAs-Mn_(2.15))achieves efficient electromagnetic wave(EMW)absorption of−51.35 dB at an ultra-thin thickness of 1.03 mm.The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations,which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices(e.g.,ultra-wideband bandpass filter).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774394 and 11704404)the Chinese Academy of Sciences(CAS),and the Key Research Program of Frontier Sciences of CAS(Grant No.QYZDB-SSW-SYS003).
文摘Impacts of microenvironments on cell migration have been reported in various interaction modes.A rapid tumor metastasis occurs along topological interfaces in vivo,such as the interface between the blood vessels and nerves.In this work,we culture MDA-MB231 cells at dish-liquid,dish-hydrogel,and hydrogel-liquid interfaces,respectively,to study how these different interfaces influence cell dynamics and morphology.Our results show that the migration mode of cells changes from an amoeboid motion to a mesenchymal motion but their speed do not change obviously if the interface changes from hydrogel-liquid to dish-liquid.In contrast,the migration mode of cells at a dish-hydrogel interface maintains as a mesenchymal motion,whereas their speed increases significantly.
文摘A theoretical investigation was conducted of laminar fully developed mixed convection of alumina-water nanofluid through a vertical annulus, to improve its heating/cooling performance. We focused on con- trolling the nanoparticle migration and studying how it affected the heat transfer rate and pressure drop. Because the nanoparticles have very small dimensions, we only considered Brownian motion and ther- mophoretic diffusivity as the main causes of nanoparticle migration. Because thermophoresis is very sensitive to temperature gradients, we imposed various temperature gradients using asymmetric heat- ing. Considering hydrodynamically and thermally fully developed flow, the governing equations were reduced to two-point ordinary boundary value differential equations and were solved numerically. The imposed thermal asymmetry changed the direction of nanoparticle migration and distorted the velocity, temperature, and nanoparticle concentration profiles. Moreover, we found optimum values for the radius ratio (ζ) and heat flux ratio (ε); with these optimum values, the nanofluid enhanced the efficacy of the system.