A novel multifunctional macromolecular organolithium initiator (PD-Sn-(RLi)3) was prepared via living anionic polymerization and used for the synthesis of miktoarm star copolymers in cyclohexane. The average molec...A novel multifunctional macromolecular organolithium initiator (PD-Sn-(RLi)3) was prepared via living anionic polymerization and used for the synthesis of miktoarm star copolymers in cyclohexane. The average molecular weight, polydispersity index, microstructure and unit composition of the miktoarm star copolymers were characterized with GPC and 1H-NMR. Performances of the miktoarm star styrene-butadiene rubbers were investigated in comparison with those of the blend rubbers such as the tin-coupled star-shaped random copolymers of styrene-butadiene rubber(S-SBR)/natural rubber (NR) blend rubber and S-SBR/Cis-1, 4-polybutadiene rubber (Cis-BR) blend rubber.展开更多
We report on the fabrication of self-assembled micelles from ABC-type miktoarm star polypeptide hybrid copolymers consisting of poly(ethylene oxide), poly(L-lysine), and poly(e-caprolactone) arms, PEO(-b-PLL)-...We report on the fabrication of self-assembled micelles from ABC-type miktoarm star polypeptide hybrid copolymers consisting of poly(ethylene oxide), poly(L-lysine), and poly(e-caprolactone) arms, PEO(-b-PLL)-b-PCL, and their functional applications as co-delivery nanocarriers of chemotherapeutic drugs and plasmid DNA. Miktoarm star copolymer precursors, PEO(-b-PZLL)-b-PCL, were synthesized at first via the combination of consecutive "click" reactions and ring-opening polymerizations (ROP), where PZLL is poly(e-benzyloxycarbonyl-L-lysine). Subsequently, the deprotection of PZLL arm afforded amphiphilic miktoarm star copolymers, PEO(-b-PLL)-b-PCL. In aqueous media at pH 7.4, PEO(-b-PLL)-b-PCL self-assembles into micelles consisting of PCL cores and hydrophilic PEO/PLL hybrid coronas. The hydrophobic micellar cores can effectively encapsulate model hydrophobic anticancer drug, paclitaxel; whereas positively charged PLL arms within mixed micellar corona are capable of forming electrostatic polyplexes with negatively charged plasmid DNA (pDNA) at N/P ratios higher than ca. 2. Thus, PEO(-b-PLL)-b-PCL micelles can act as co-delivery nanovehicles for both chemotherapeutic drugs and genes. Furthermore, polyplexes of pDNA with paclitaxel-loaded PEO(-b- PLL)-b-PCL micelles exhibited improved transfection efficiency compared to that of pDNA/blank micelles. We expect that the reported strategy of varying chain topologies for the fabrication of co-delivery polymeric nanocarriers can be further applied to integrate with other advantageous functions such as targeting, imaging, and diagnostics.展开更多
It is well-known that amphiphilic star-shaped copolymers can self-assemble in selective solvents to form complicated micellar constructs as a synergistic result of both the topological constraints and relative volume ...It is well-known that amphiphilic star-shaped copolymers can self-assemble in selective solvents to form complicated micellar constructs as a synergistic result of both the topological constraints and relative volume fractions of the arms.Although the association phenomena of amphiphilic stars have been observed in nonselective solvents,both the structural detail and formation mechanism of these associates are not clear yet.Moreover,these experimental observations are controversial with respect to molecularly dispersed starlike copolymers in nonselective solvents as is popularly believed.To clarify these issues,we have synthesized a series of polyoxometalate-based polystyrene-poly(ethylene glycol)(PS-PEG)miktoarm star supramolecular copolymers(SEW-1–5)by coupling a Keggin-type polyoxometalate of K4[α-SiW12O40]with 1,2,3-triazolium bridged block copolymers of-PSn-b+-PEGmI-(n=17,26,39,57,81;m=45)through ionic exchange reactions,respectively.TEM imaging,contact angle and 1H NMR studies reveal that SEW-2–5 self-assemble in chloroform,THF,and toluene to create micellelike aggregates ranging from cylinder to sphere with a PS corona and a PEG core,while for SEW-1,reverse bilayers are captured with a PEG corona and a PS core.Among these aggregates,the Keggin clusters of[α-SiW12O40]4-localize at the core-corona interfaces between PS and PEG.In terms of solvent quality,chloroform,THF,and toluene are only slightly poorer for PEG than that for PS with a relative order of chloroform<THF<toluene.These unexpected aggregates originate from the topological constraints of the chemically different arms of PS and PEG in the miktoarm stars,where the weak incompatibility between the PS and PEG arms is intensified appropriately.The presence of the reverse bilayered structures of SEW-1 is due to the magnified steric hindrance of the PEG45 arm with decreasing the molecular weight of the PS17 arm.However,to the best of our knowledge,these are the first examples clearly indicating that miktoarm star copolymers can self-assemble in common good solvents or slightly selective solvents to generate micellelike aggregates.This scenario is not only in sharp contrast to the intuitively considered behavior of unimolecular miktoarm stars in nonselective solvents,but also rather different from the conventional selfassembly behavior of amphiphilic star copolymers in selective solvents.展开更多
A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reactio...A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reaction of n-butyl-Li (n-BuLi), stannic chloride (SnCl4) and diene. Then PD-SnCl3 was used to react with the dilithium initiator to prepare the multifunctional organic macromolecular initiators. The result suggested that the initiators had a remarkable yield by GPC, nearly 90%. By using these multifunctional macromolecular initiators, styrene and butadiene were effectively polymefized via anionic polymerization, which gave birth to novel miktoarm star copolymers. The relative molecular weight and polydispersity index, microstructure contents, copolymerization components, glass transition temperature (Tg) and morphology of the miktoarm star copolymers were investigated by GPC-UV, ~H NMR, DSC and TEM, respectively. 2009 Xing Ying Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
In order to obtain the optimized structure rubber, a novel miktoarm star styrene-butadiene rubber (MS- SBR) was initiated by a multifunctional macromolecular initiator with polydiene arm and Sn-C bond. The propertie...In order to obtain the optimized structure rubber, a novel miktoarm star styrene-butadiene rubber (MS- SBR) was initiated by a multifunctional macromolecular initiator with polydiene arm and Sn-C bond. The properties of MS-SBR were investigated with respect to the morphology, mechanical properties, and dynamic viscoelasticity in comparison with those of the blends, natural rubber (NR)/star styrene-butadiene random rubber (S-SBR) blend rubber and cis-l,4-polybutadiene rubber (cis-BR)/S-SBR blend rubber. The samples were analyzed using transmission elec- tron microscopy (TEM), dynamic mechanical thermal analyzer (DMTA), and mechanical properties test. The analy- sis results show that MS-SBR possesses the desired combination of low rolling resistance and high antiskid resistance, and is promising for application in high performance tire tread.展开更多
基金Supported by the National Natural Science Foundation of China(50573005)
文摘A novel multifunctional macromolecular organolithium initiator (PD-Sn-(RLi)3) was prepared via living anionic polymerization and used for the synthesis of miktoarm star copolymers in cyclohexane. The average molecular weight, polydispersity index, microstructure and unit composition of the miktoarm star copolymers were characterized with GPC and 1H-NMR. Performances of the miktoarm star styrene-butadiene rubbers were investigated in comparison with those of the blend rubbers such as the tin-coupled star-shaped random copolymers of styrene-butadiene rubber(S-SBR)/natural rubber (NR) blend rubber and S-SBR/Cis-1, 4-polybutadiene rubber (Cis-BR) blend rubber.
基金supported by the National Natural Science Foundation of China (Nos. 21274137, 91027026 and 51033005)Fundamental Research Funds for the Central UniversitiesSpecialized Research Fund for the Doctoral Program of Higher Education (SRFDP, 20123402130010)
文摘We report on the fabrication of self-assembled micelles from ABC-type miktoarm star polypeptide hybrid copolymers consisting of poly(ethylene oxide), poly(L-lysine), and poly(e-caprolactone) arms, PEO(-b-PLL)-b-PCL, and their functional applications as co-delivery nanocarriers of chemotherapeutic drugs and plasmid DNA. Miktoarm star copolymer precursors, PEO(-b-PZLL)-b-PCL, were synthesized at first via the combination of consecutive "click" reactions and ring-opening polymerizations (ROP), where PZLL is poly(e-benzyloxycarbonyl-L-lysine). Subsequently, the deprotection of PZLL arm afforded amphiphilic miktoarm star copolymers, PEO(-b-PLL)-b-PCL. In aqueous media at pH 7.4, PEO(-b-PLL)-b-PCL self-assembles into micelles consisting of PCL cores and hydrophilic PEO/PLL hybrid coronas. The hydrophobic micellar cores can effectively encapsulate model hydrophobic anticancer drug, paclitaxel; whereas positively charged PLL arms within mixed micellar corona are capable of forming electrostatic polyplexes with negatively charged plasmid DNA (pDNA) at N/P ratios higher than ca. 2. Thus, PEO(-b-PLL)-b-PCL micelles can act as co-delivery nanovehicles for both chemotherapeutic drugs and genes. Furthermore, polyplexes of pDNA with paclitaxel-loaded PEO(-b- PLL)-b-PCL micelles exhibited improved transfection efficiency compared to that of pDNA/blank micelles. We expect that the reported strategy of varying chain topologies for the fabrication of co-delivery polymeric nanocarriers can be further applied to integrate with other advantageous functions such as targeting, imaging, and diagnostics.
基金supported by the National Natural Science Foundation of China(21674044,21504036,21474044)the Open Project of State Key Laboratory of Supramolecular Structure and Materials of Jilin University(sklssm201903)the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences(2018-25)。
文摘It is well-known that amphiphilic star-shaped copolymers can self-assemble in selective solvents to form complicated micellar constructs as a synergistic result of both the topological constraints and relative volume fractions of the arms.Although the association phenomena of amphiphilic stars have been observed in nonselective solvents,both the structural detail and formation mechanism of these associates are not clear yet.Moreover,these experimental observations are controversial with respect to molecularly dispersed starlike copolymers in nonselective solvents as is popularly believed.To clarify these issues,we have synthesized a series of polyoxometalate-based polystyrene-poly(ethylene glycol)(PS-PEG)miktoarm star supramolecular copolymers(SEW-1–5)by coupling a Keggin-type polyoxometalate of K4[α-SiW12O40]with 1,2,3-triazolium bridged block copolymers of-PSn-b+-PEGmI-(n=17,26,39,57,81;m=45)through ionic exchange reactions,respectively.TEM imaging,contact angle and 1H NMR studies reveal that SEW-2–5 self-assemble in chloroform,THF,and toluene to create micellelike aggregates ranging from cylinder to sphere with a PS corona and a PEG core,while for SEW-1,reverse bilayers are captured with a PEG corona and a PS core.Among these aggregates,the Keggin clusters of[α-SiW12O40]4-localize at the core-corona interfaces between PS and PEG.In terms of solvent quality,chloroform,THF,and toluene are only slightly poorer for PEG than that for PS with a relative order of chloroform<THF<toluene.These unexpected aggregates originate from the topological constraints of the chemically different arms of PS and PEG in the miktoarm stars,where the weak incompatibility between the PS and PEG arms is intensified appropriately.The presence of the reverse bilayered structures of SEW-1 is due to the magnified steric hindrance of the PEG45 arm with decreasing the molecular weight of the PS17 arm.However,to the best of our knowledge,these are the first examples clearly indicating that miktoarm star copolymers can self-assemble in common good solvents or slightly selective solvents to generate micellelike aggregates.This scenario is not only in sharp contrast to the intuitively considered behavior of unimolecular miktoarm stars in nonselective solvents,but also rather different from the conventional selfassembly behavior of amphiphilic star copolymers in selective solvents.
基金supported by National Natural Science Foundation of China(No.50573005)
文摘A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reaction of n-butyl-Li (n-BuLi), stannic chloride (SnCl4) and diene. Then PD-SnCl3 was used to react with the dilithium initiator to prepare the multifunctional organic macromolecular initiators. The result suggested that the initiators had a remarkable yield by GPC, nearly 90%. By using these multifunctional macromolecular initiators, styrene and butadiene were effectively polymefized via anionic polymerization, which gave birth to novel miktoarm star copolymers. The relative molecular weight and polydispersity index, microstructure contents, copolymerization components, glass transition temperature (Tg) and morphology of the miktoarm star copolymers were investigated by GPC-UV, ~H NMR, DSC and TEM, respectively. 2009 Xing Ying Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金Supported by National Natural Science Foundation of China (No.50573005)
文摘In order to obtain the optimized structure rubber, a novel miktoarm star styrene-butadiene rubber (MS- SBR) was initiated by a multifunctional macromolecular initiator with polydiene arm and Sn-C bond. The properties of MS-SBR were investigated with respect to the morphology, mechanical properties, and dynamic viscoelasticity in comparison with those of the blends, natural rubber (NR)/star styrene-butadiene random rubber (S-SBR) blend rubber and cis-l,4-polybutadiene rubber (cis-BR)/S-SBR blend rubber. The samples were analyzed using transmission elec- tron microscopy (TEM), dynamic mechanical thermal analyzer (DMTA), and mechanical properties test. The analy- sis results show that MS-SBR possesses the desired combination of low rolling resistance and high antiskid resistance, and is promising for application in high performance tire tread.