Autoimmune pancreatitis(AIP)is a form of chronic pancreatitis that is categorized as type 1 or type 2according to the clinical profile.Type 1 AIP,which predominantly presents in a few Asian countries,is a hyper-IgG4-r...Autoimmune pancreatitis(AIP)is a form of chronic pancreatitis that is categorized as type 1 or type 2according to the clinical profile.Type 1 AIP,which predominantly presents in a few Asian countries,is a hyper-IgG4-related disease.We report a case of IgG4-related AIP overlapping with Mikulicz’s disease and lymphadenitis,which is rare and seldom reported in literature.A 63-year male from Northeast China was admitted for abdominal distension lasting for one year.He presented symmetric swelling of the parotid and submandibular glands with slight dysfunction of salivary secretion for 6 mo.He had a 2-year history of bilateral submandibular lymphadenopathy without pain.He underwent surgical excision of the right submandibular lymph node one year prior to admission.He denied any history of alcohol,tobacco,or illicit drug use.Serological examination revealed high fasting blood sugar level(8.8 mmol/L)and high level of IgG4(15.2 g/L).Anti-SSA or anti-SSB were negative.Computed tomography of the abdomen showed a diffusely enlarged pancreas with loss of lobulation.Immunohistochemical stain for IgG4 demonstrated diffuse infiltration of IgG4-positive plasma cells in labial salivary gland and lymph node biopsy specimens.The patient received a dose of 30 mg/d of prednisone for three weeks.At this three-week follow-up,the patient reported no discomfort and his swollen salivary glands,neck lymph node and pancreas had returned to normal size.The patient received a maintenance dose of 10mg/d of prednisone for 6 mo,after which his illness had not recurred.展开更多
Purpose: To report an unusual case of IgG4-related Mikulicz's disease associated with thyroiditis.Case report: We describe a 25-year-old Chinese man who presented with bilateral, painless swellings of the lachryma...Purpose: To report an unusual case of IgG4-related Mikulicz's disease associated with thyroiditis.Case report: We describe a 25-year-old Chinese man who presented with bilateral, painless swellings of the lachrymal glands, parotid glands, and thyroid nodules. The patient underwent left-sided dacryoadenectomy and the diagnosis of IgG4-related Mikulicz's disease was pathologically confirmed.The size of the right-sided lachrymal gland and parotid glands recovered fundamentally after one month of glucocorticoid therapy.Conclusion: IgG4-related Mikulicz's disease associated with thyroiditis should be considered in the differential diagnosis of bilateral swellings of lachrymal glands, salivary glands, and thyroid nodules. Surgical excision is recommended in order to treat the tumor and to ensure the pathological diagnosis. Glucocorticoid therapy should be considered in association with surgery after removal.展开更多
Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Review...Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.展开更多
Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exoso...Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.展开更多
This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivot...This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease,encompassing diverse components such as the gut microbiota,immune system,metabolism,and neural pathways.The gut microbiome,profoundly influenced by dietary factors,emerges as a key player.Nutrition during the first 1000 days of life shapes the gut microbiota composition,influencing immune responses and impacting both child development and adult health.High-fat,high-sugar diets can disrupt this delicate balance,contributing to inflammation and immune dysfunction.Exploring nutritional strategies,the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk.Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders.Beyond nutrition,emerging research uncovers potential interactions between steroid hormones,nutrition,and Parkinson's disease.Progesterone,with its anti-inflammatory properties and presence in the nervous system,offers a novel option for Parkinson's disease therapy.Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects.The review addresses the hypothesis thatα-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve.Gastrointestinal symptoms preceding motor symptoms support this hypothesis.Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances,emphasizing the potential of microbiota-based interventions.In summary,this review uncovers the complex web of interactions between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the gut-brain axis framework.Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.展开更多
The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating dis...The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease.Physiologically,these two proteins are produced and expressed within the normal human body.However,under pathological conditions,abnormal expression,posttranslational modifications,conformational changes,and truncation can make these proteins prone to aggregation,triggering specific disease-related cascades.Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases,such as Alzheimer's disease,Parkinson's disease,and amyotrophic lateral sclerosis,as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration.Additionally,these proteins have been linked to cardiovascular disease,cancer,traumatic brain injury,and diabetes,which are all leading causes of morbidity and mortality.In this comprehensive review,we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.展开更多
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin...Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.展开更多
This editorial comments on an article published in a recent issue of World Journal of Gastroenterology,entitled“Association of low muscle strength with metabolic dysfunction-associated fatty liver disease:A nationwid...This editorial comments on an article published in a recent issue of World Journal of Gastroenterology,entitled“Association of low muscle strength with metabolic dysfunction-associated fatty liver disease:A nationwide study”.We focused on the association between muscle strength and the incidence of non-alcoholic fatty liver disease(NAFLD)and metabolic-associated fatty liver disease(MAFLD),as well as the mechanisms underlying the correlation and related clinical applications.NAFLD,which is now redefined as MAFLD,is one of the most common chronic liver diseases globally with an increasing prevalence and is characterized by malnutrition,which may contribute to decreased muscle strength.Reduction of muscle strength reportedly has a pathogenesis similar to that of NAFLD/MAFLD,including insulin resistance,inflammation,sedentary behavior,as well as insufficient vitamin D.Multiple studies have focused on the relationship between sarcopenia or muscle strength and NAFLD.However,studies investigating the relationship between muscle strength and MAFLD are limited.Owing to the shortage of specific medications for NAFLD/MAFLD treatment,early detection is essential.Furthermore,the relationship between muscle strength and NAFLD/MAFLD suggests that improvements in muscle strength may have an impact on disease prevention and may provide novel insights into treatments including dietary therapy,as well as tailored physical activity.展开更多
Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins.Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular home...Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins.Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular homeostasis,while providing nutrients and support for cell survival.Chaperone-mediated autophagy activity can be detected in almost all cells,including neurons.Owing to the extreme sensitivity of neurons to their environmental changes,maintaining neuronal homeostasis is critical for neuronal growth and survival.Chaperone-mediated autophagy dysfunction is closely related to central nervous system diseases.It has been shown that neuronal damage and cell death are accompanied by chaperone-mediated autophagy dysfunction.Under certain conditions,regulation of chaperone-mediated autophagy activity attenuates neurotoxicity.In this paper,we review the changes in chaperone-mediated autophagy in neurodegenerative diseases,brain injury,glioma,and autoimmune diseases.We also summarize the most recent research progress on chaperone-mediated autophagy regulation and discuss the potential of chaperone-mediated autophagy as a therapeutic target for central nervous system diseases.展开更多
Mitochondria are critical cellular energy resources and are central to the life of the neuron.Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial q...Mitochondria are critical cellular energy resources and are central to the life of the neuron.Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis.Mature neurons are postmitotic and consume substantial energy,thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria.Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases.However,more work is needed to study mitophagy pathway components as potential therapeutic targets.In this review,we briefly discuss the characteristics of nonselective autophagy and selective autophagy,including ERphagy,aggrephagy,and mitophagy.We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions.Next,we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy.Importantly,we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.Last,we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases.Together,our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.展开更多
Alzheimer's disease is the most common cause of dementia globally with an increasing incidence over the years,bringing a heavy burden to individuals and society due to the lack of an effective treatment.In this co...Alzheimer's disease is the most common cause of dementia globally with an increasing incidence over the years,bringing a heavy burden to individuals and society due to the lack of an effective treatment.In this context,sirtuin 2,the sirtuin with the highest expression in the brain,has emerged as a potential therapeutic target for neurodegenerative diseases.This review summarizes and discusses the complex roles of sirtuin 2 in different molecular mechanisms involved in Alzheimer's disease such as amyloid and tau pathology,microtubule stability,neuroinflammation,myelin formation,autophagy,and oxidative stress.The role of sirtuin 2 in all these processes highlights its potential implication in the etiology and development of Alzheimer's disease.However,its presence in different cell types and its enormous variety of substrates leads to apparently contra dictory conclusions when it comes to understanding its specific functions.Further studies in sirtuin 2 research with selective sirtuin2 modulators targeting specific sirtuin 2 substrates are necessary to clarify its specific functions under different conditions and to validate it as a novel pharmacological target.This will contribute to the development of new treatment strategies,not only for Alzheimer's disease but also for other neurodegenerative diseases.展开更多
Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and th...Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide.Therefore,it is necessary to find new therapeutic approaches,and antisense therapies offer this possibility,having the great advantage of not modifying cellular genome and potentially being safer.Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases.The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases,with a focus on those antisense therapies that have already received the approval of the U.S.Food and Drug Administration.展开更多
Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including pa...Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.展开更多
Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NAD...Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer’s disease and Parkinson’s disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.展开更多
Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients wit...Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients with early-stage Parkinson’s disease,and can often predate the diagnosis by years.Therefore,olfactory dysfunction should be considered a reliable marker of the disease.However,the mechanisms responsible for olfactory dysfunction are currently unknown.In this article,we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson’s disease.On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels,we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson’s disease.The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson’s disease.Therefore,therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson’s disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms,highlighting the potential of identifying effective targets for treating Parkinson’s disease by inhibiting the deterioration of olfactory dysfunction.展开更多
Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esth...Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine.展开更多
Alanine aminotransferase(ALT)serum levels increase because of hepatocellular damage.Metabolic dysfunction-associated fatty liver disease(MAFLD),which identifies steatotic liver disease(SLD)associated with≥2 metabolic...Alanine aminotransferase(ALT)serum levels increase because of hepatocellular damage.Metabolic dysfunction-associated fatty liver disease(MAFLD),which identifies steatotic liver disease(SLD)associated with≥2 metabolic abnormalities,has prominent sexual differences.The Metabolic Syndrome defines a cluster comprising abdominal obesity,altered glucose metabolism,dyslipidemia,and hypertension.Male sex,body mass index,glucose,lipids,ferritin,hypertension,and age independently predict ALT levels among blood donors.Over the last few decades,the reference range of ALT levels has been animatedly debated owing to attempts to update sex-specific reference ranges.With this backset,Chen et al have recently published a study which has two main findings.First,>80%of indi-viduals with MAFLD had normal ALT levels.Second,there was a linear increa-sing trend in the association between cumulative excess high-normal ALT levels and the rate of incident MAFLD.This study has biologically credible findings.However,it inaccurately considered sex differences in the MAFLD arena.Therefore,future studies on SLD owing to metabolic dysfunction should adopt locally determined and prospectively validated reference ranges of ALT and carefully consider sex differences in liver enzymes and MAFLD pathobiology.展开更多
ATP-binding cassette(ABC)transporters are ubiquitous membrane-bound proteins that are responsible for the translocation of a broad spectrum of substrates across cellular membranes,including lipids,amino acids,nucleosi...ATP-binding cassette(ABC)transporters are ubiquitous membrane-bound proteins that are responsible for the translocation of a broad spectrum of substrates across cellular membranes,including lipids,amino acids,nucleosides,sugars,and xenobiotics.Interestingly,ABC transporters are highly expressed in the brain.While their functions in the brain still need to be elucidated,several members are implicated in the pathogenesis of neurodegenerative diseases,including Alzheimer’s disease(AD),Parkinson’s disease(PD),and frontotemporal dementia.In this perspective,we will review current knowledge of ABC transporters in the central nervous system in terms of physiological functions and pathology in neurodegeneration.Furthermore,we will explore the possibilities of ABC transporters as potential targets in the development of therapeutics for neurodegenerative diseases.展开更多
Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and de...Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation.A large number of studies have shown that autophagy is closely related to the digestion,secretion,and regeneration of gastrointestinal(GI)cells.However,the role of autophagy in GI diseases remains controversial.This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases,in order to provide new ideas for their diagnosis and treatment.展开更多
Corneal neuromas,also termed microneuromas,refer to microscopic,irregula rly-shaped enlargements of terminal subbasal nerve endings at sites of nerve damage or injury.The formation of corneal neuromas results from dam...Corneal neuromas,also termed microneuromas,refer to microscopic,irregula rly-shaped enlargements of terminal subbasal nerve endings at sites of nerve damage or injury.The formation of corneal neuromas results from damage to corneal nerves,such as following corneal pathology or corneal or intraocular surge ries.Initially,denervated areas of sensory nerve fibers become invaded by sprouts of intact sensory nerve fibers,and later injured axons regenerate and new sprouts called neuromas develop.In recent years,analysis of corneal nerve abnormalities including corneal neuromas which can be identified using in vivo confocal microscopy,a non-invasive imaging technique with microscopic resolution,has been used to evaluate corneal neuropathy and ocular surface dysfunction.Corneal neuromas have been shown to be associated with clinical symptoms of discomfort and dryness of eyes,and are a promising surrogate biomarker for ocular surface diseases,such as neuropathic corneal pain,dry eye disease,diabetic corneal neuropathy,neurotrophic keratopathy,Sjogren's syndrome,bullous keratopathy,post-refra ctive surgery,and others.In this review,we have summarized the current literature on the association between these ocular surface diseases and the presentation of corneal microneuromas,as well as elaborated on their pathogenesis,visualization via in vivo confocal microscopy,and utility in monitoring treatment efficacy.As current quantitative analysis on neuromas mainly relies on manual annotation and quantification,which is user-dependent and labor-intensive,future direction includes the development of artificial intelligence software to identify and quantify these potential imaging biomarkers in a more automated and sensitive manner,allowing it to be applied in clinical settings more efficiently.Combining imaging and molecular biomarkers may also help elucidate the associations between corneal neuromas and ocular surface diseases.展开更多
基金Supported by National Natural Scientific FoundationNo.8107037081270544(to Gao RP)and NIH 5R01AA016003(to Brigstock D)
文摘Autoimmune pancreatitis(AIP)is a form of chronic pancreatitis that is categorized as type 1 or type 2according to the clinical profile.Type 1 AIP,which predominantly presents in a few Asian countries,is a hyper-IgG4-related disease.We report a case of IgG4-related AIP overlapping with Mikulicz’s disease and lymphadenitis,which is rare and seldom reported in literature.A 63-year male from Northeast China was admitted for abdominal distension lasting for one year.He presented symmetric swelling of the parotid and submandibular glands with slight dysfunction of salivary secretion for 6 mo.He had a 2-year history of bilateral submandibular lymphadenopathy without pain.He underwent surgical excision of the right submandibular lymph node one year prior to admission.He denied any history of alcohol,tobacco,or illicit drug use.Serological examination revealed high fasting blood sugar level(8.8 mmol/L)and high level of IgG4(15.2 g/L).Anti-SSA or anti-SSB were negative.Computed tomography of the abdomen showed a diffusely enlarged pancreas with loss of lobulation.Immunohistochemical stain for IgG4 demonstrated diffuse infiltration of IgG4-positive plasma cells in labial salivary gland and lymph node biopsy specimens.The patient received a dose of 30 mg/d of prednisone for three weeks.At this three-week follow-up,the patient reported no discomfort and his swollen salivary glands,neck lymph node and pancreas had returned to normal size.The patient received a maintenance dose of 10mg/d of prednisone for 6 mo,after which his illness had not recurred.
基金supported by the National Natural Science Foundation of China(No.81260149,No.81360152)
文摘Purpose: To report an unusual case of IgG4-related Mikulicz's disease associated with thyroiditis.Case report: We describe a 25-year-old Chinese man who presented with bilateral, painless swellings of the lachrymal glands, parotid glands, and thyroid nodules. The patient underwent left-sided dacryoadenectomy and the diagnosis of IgG4-related Mikulicz's disease was pathologically confirmed.The size of the right-sided lachrymal gland and parotid glands recovered fundamentally after one month of glucocorticoid therapy.Conclusion: IgG4-related Mikulicz's disease associated with thyroiditis should be considered in the differential diagnosis of bilateral swellings of lachrymal glands, salivary glands, and thyroid nodules. Surgical excision is recommended in order to treat the tumor and to ensure the pathological diagnosis. Glucocorticoid therapy should be considered in association with surgery after removal.
基金supported partly by the National Natural Science Foundation of China,Nos.32161143021 and 81271410the Natural Science Foundation of Henan Province of China,No.182300410313(all to JW)。
文摘Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
基金supported by grants from the Department of Science and Technology of Sichuan Province,Nos.2021ZYD0093(to LY),2022YFS0597(to LY),2021YJ0480(to YT),and 2022ZYD0076(to JY)。
文摘Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.
文摘This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease,encompassing diverse components such as the gut microbiota,immune system,metabolism,and neural pathways.The gut microbiome,profoundly influenced by dietary factors,emerges as a key player.Nutrition during the first 1000 days of life shapes the gut microbiota composition,influencing immune responses and impacting both child development and adult health.High-fat,high-sugar diets can disrupt this delicate balance,contributing to inflammation and immune dysfunction.Exploring nutritional strategies,the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk.Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders.Beyond nutrition,emerging research uncovers potential interactions between steroid hormones,nutrition,and Parkinson's disease.Progesterone,with its anti-inflammatory properties and presence in the nervous system,offers a novel option for Parkinson's disease therapy.Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects.The review addresses the hypothesis thatα-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve.Gastrointestinal symptoms preceding motor symptoms support this hypothesis.Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances,emphasizing the potential of microbiota-based interventions.In summary,this review uncovers the complex web of interactions between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the gut-brain axis framework.Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.
文摘The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease.Physiologically,these two proteins are produced and expressed within the normal human body.However,under pathological conditions,abnormal expression,posttranslational modifications,conformational changes,and truncation can make these proteins prone to aggregation,triggering specific disease-related cascades.Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases,such as Alzheimer's disease,Parkinson's disease,and amyotrophic lateral sclerosis,as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration.Additionally,these proteins have been linked to cardiovascular disease,cancer,traumatic brain injury,and diabetes,which are all leading causes of morbidity and mortality.In this comprehensive review,we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
基金supported by the National Natural Science Foundation of China,Nos.82230042 and 81930029(to ZY),U2004201(to FG and RYP)the China Postdoctoral Science Foundation,No.2020M683748(to RYP)。
文摘Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.
基金Supported by National Natural Science Foundation of China,No.82000625the Doctoral Scientific Research Foundation of Liaoning Province,No.2020-BS-109.
文摘This editorial comments on an article published in a recent issue of World Journal of Gastroenterology,entitled“Association of low muscle strength with metabolic dysfunction-associated fatty liver disease:A nationwide study”.We focused on the association between muscle strength and the incidence of non-alcoholic fatty liver disease(NAFLD)and metabolic-associated fatty liver disease(MAFLD),as well as the mechanisms underlying the correlation and related clinical applications.NAFLD,which is now redefined as MAFLD,is one of the most common chronic liver diseases globally with an increasing prevalence and is characterized by malnutrition,which may contribute to decreased muscle strength.Reduction of muscle strength reportedly has a pathogenesis similar to that of NAFLD/MAFLD,including insulin resistance,inflammation,sedentary behavior,as well as insufficient vitamin D.Multiple studies have focused on the relationship between sarcopenia or muscle strength and NAFLD.However,studies investigating the relationship between muscle strength and MAFLD are limited.Owing to the shortage of specific medications for NAFLD/MAFLD treatment,early detection is essential.Furthermore,the relationship between muscle strength and NAFLD/MAFLD suggests that improvements in muscle strength may have an impact on disease prevention and may provide novel insights into treatments including dietary therapy,as well as tailored physical activity.
基金supported by the National Nature Science Foundation of China,Nos.81871603(to XZ)and 82171322(to ZF)Discipline Boost Program of the First Affiliated Hospital of Air Force Military Medical University,No.XJZT21J08(to XZ)the Natural Science Foundation of Shaanxi Province of China,No.2022KJXX-102(to ZF)。
文摘Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins.Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular homeostasis,while providing nutrients and support for cell survival.Chaperone-mediated autophagy activity can be detected in almost all cells,including neurons.Owing to the extreme sensitivity of neurons to their environmental changes,maintaining neuronal homeostasis is critical for neuronal growth and survival.Chaperone-mediated autophagy dysfunction is closely related to central nervous system diseases.It has been shown that neuronal damage and cell death are accompanied by chaperone-mediated autophagy dysfunction.Under certain conditions,regulation of chaperone-mediated autophagy activity attenuates neurotoxicity.In this paper,we review the changes in chaperone-mediated autophagy in neurodegenerative diseases,brain injury,glioma,and autoimmune diseases.We also summarize the most recent research progress on chaperone-mediated autophagy regulation and discuss the potential of chaperone-mediated autophagy as a therapeutic target for central nervous system diseases.
基金supported by the National Natural Science Foundation of China,Nos.82001211(to KY),82101241(to SW),and 82125032(to FL).
文摘Mitochondria are critical cellular energy resources and are central to the life of the neuron.Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis.Mature neurons are postmitotic and consume substantial energy,thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria.Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases.However,more work is needed to study mitophagy pathway components as potential therapeutic targets.In this review,we briefly discuss the characteristics of nonselective autophagy and selective autophagy,including ERphagy,aggrephagy,and mitophagy.We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions.Next,we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy.Importantly,we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.Last,we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases.Together,our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.
基金funded by FEDER/Ministerio de CienciaInnovacion y Universidades Agencia Estatal de Investigacion(MCIN/AEI 10.13039/501100011033)Grant(SAF2017-87595-R and PID2020-119729G8-100)(to EP)"Amigos de Ia Universidad de Navarra"and the Spanish Ministry of Universities for a fellowship(FPU)to NSS。
文摘Alzheimer's disease is the most common cause of dementia globally with an increasing incidence over the years,bringing a heavy burden to individuals and society due to the lack of an effective treatment.In this context,sirtuin 2,the sirtuin with the highest expression in the brain,has emerged as a potential therapeutic target for neurodegenerative diseases.This review summarizes and discusses the complex roles of sirtuin 2 in different molecular mechanisms involved in Alzheimer's disease such as amyloid and tau pathology,microtubule stability,neuroinflammation,myelin formation,autophagy,and oxidative stress.The role of sirtuin 2 in all these processes highlights its potential implication in the etiology and development of Alzheimer's disease.However,its presence in different cell types and its enormous variety of substrates leads to apparently contra dictory conclusions when it comes to understanding its specific functions.Further studies in sirtuin 2 research with selective sirtuin2 modulators targeting specific sirtuin 2 substrates are necessary to clarify its specific functions under different conditions and to validate it as a novel pharmacological target.This will contribute to the development of new treatment strategies,not only for Alzheimer's disease but also for other neurodegenerative diseases.
基金supported by Association 2HE(Center for Human Health and Environment)by Regione Puglia-Grant Malattie Rare DUP n.246 of 2019(to CB).
文摘Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide.Therefore,it is necessary to find new therapeutic approaches,and antisense therapies offer this possibility,having the great advantage of not modifying cellular genome and potentially being safer.Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases.The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases,with a focus on those antisense therapies that have already received the approval of the U.S.Food and Drug Administration.
文摘Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.
基金supported by the National Research Foundation of the Republic of Korea 2018R1D1A3B07047960the Soonchunhyang University Research Fund(to SSY).
文摘Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer’s disease and Parkinson’s disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.
基金supported by the National Natural Science Foundation of China,No.82104421the China Postdoctoral Science Foundation,No.2022M721726+1 种基金the Innovation and Entrepreneurship Training Program for College Students of Jiangsu Province,No.202210304155Ythe Research Startup Fund Program of Nantong University,No.135421623023(all to XZ).
文摘Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients with early-stage Parkinson’s disease,and can often predate the diagnosis by years.Therefore,olfactory dysfunction should be considered a reliable marker of the disease.However,the mechanisms responsible for olfactory dysfunction are currently unknown.In this article,we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson’s disease.On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels,we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson’s disease.The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson’s disease.Therefore,therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson’s disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms,highlighting the potential of identifying effective targets for treating Parkinson’s disease by inhibiting the deterioration of olfactory dysfunction.
基金supported by the National Natural Science Foundation of China Grants(82370945, 82171001, 82222015 and 82370915)Research Funding from West China School/Hospital of Stomatology Sichuan University(RCDWJS2023-1)。
文摘Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine.
文摘Alanine aminotransferase(ALT)serum levels increase because of hepatocellular damage.Metabolic dysfunction-associated fatty liver disease(MAFLD),which identifies steatotic liver disease(SLD)associated with≥2 metabolic abnormalities,has prominent sexual differences.The Metabolic Syndrome defines a cluster comprising abdominal obesity,altered glucose metabolism,dyslipidemia,and hypertension.Male sex,body mass index,glucose,lipids,ferritin,hypertension,and age independently predict ALT levels among blood donors.Over the last few decades,the reference range of ALT levels has been animatedly debated owing to attempts to update sex-specific reference ranges.With this backset,Chen et al have recently published a study which has two main findings.First,>80%of indi-viduals with MAFLD had normal ALT levels.Second,there was a linear increa-sing trend in the association between cumulative excess high-normal ALT levels and the rate of incident MAFLD.This study has biologically credible findings.However,it inaccurately considered sex differences in the MAFLD arena.Therefore,future studies on SLD owing to metabolic dysfunction should adopt locally determined and prospectively validated reference ranges of ALT and carefully consider sex differences in liver enzymes and MAFLD pathobiology.
文摘ATP-binding cassette(ABC)transporters are ubiquitous membrane-bound proteins that are responsible for the translocation of a broad spectrum of substrates across cellular membranes,including lipids,amino acids,nucleosides,sugars,and xenobiotics.Interestingly,ABC transporters are highly expressed in the brain.While their functions in the brain still need to be elucidated,several members are implicated in the pathogenesis of neurodegenerative diseases,including Alzheimer’s disease(AD),Parkinson’s disease(PD),and frontotemporal dementia.In this perspective,we will review current knowledge of ABC transporters in the central nervous system in terms of physiological functions and pathology in neurodegeneration.Furthermore,we will explore the possibilities of ABC transporters as potential targets in the development of therapeutics for neurodegenerative diseases.
基金Supported by the National Natural Science Foundation of China,No.81900533Science and Technology Project of Henan Science and Technology Department,No.232102520032。
文摘Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation.A large number of studies have shown that autophagy is closely related to the digestion,secretion,and regeneration of gastrointestinal(GI)cells.However,the role of autophagy in GI diseases remains controversial.This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases,in order to provide new ideas for their diagnosis and treatment.
文摘Corneal neuromas,also termed microneuromas,refer to microscopic,irregula rly-shaped enlargements of terminal subbasal nerve endings at sites of nerve damage or injury.The formation of corneal neuromas results from damage to corneal nerves,such as following corneal pathology or corneal or intraocular surge ries.Initially,denervated areas of sensory nerve fibers become invaded by sprouts of intact sensory nerve fibers,and later injured axons regenerate and new sprouts called neuromas develop.In recent years,analysis of corneal nerve abnormalities including corneal neuromas which can be identified using in vivo confocal microscopy,a non-invasive imaging technique with microscopic resolution,has been used to evaluate corneal neuropathy and ocular surface dysfunction.Corneal neuromas have been shown to be associated with clinical symptoms of discomfort and dryness of eyes,and are a promising surrogate biomarker for ocular surface diseases,such as neuropathic corneal pain,dry eye disease,diabetic corneal neuropathy,neurotrophic keratopathy,Sjogren's syndrome,bullous keratopathy,post-refra ctive surgery,and others.In this review,we have summarized the current literature on the association between these ocular surface diseases and the presentation of corneal microneuromas,as well as elaborated on their pathogenesis,visualization via in vivo confocal microscopy,and utility in monitoring treatment efficacy.As current quantitative analysis on neuromas mainly relies on manual annotation and quantification,which is user-dependent and labor-intensive,future direction includes the development of artificial intelligence software to identify and quantify these potential imaging biomarkers in a more automated and sensitive manner,allowing it to be applied in clinical settings more efficiently.Combining imaging and molecular biomarkers may also help elucidate the associations between corneal neuromas and ocular surface diseases.