The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)...The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.展开更多
Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-hepta...Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-heptane and inhibit the cracking side reaction.MIL-101(Cr)is a chromium-based metal-organic framework(MOF)with good hydrothermal stability,and exhibits a three-dimensional pore structure that is similar to that of zeolites.Using phosphomolybdic acid(PMA;H3PMo12O40·xH2O)can increase the number of Brønsted acid sites on MIL-101(Cr),which contributes to improving the catalytic performance during isomerization.In this study,0.4%Pt/PMA-MIL-101(Cr)catalyst was successfully crystallized at 220℃using a hydrothermal synthetic method.The results showed that the synthesized samples were mesoporousmicroporous composite materials with the typical octahedral structure,and the MIL-101(Cr)framework was not damaged following modification with PMA.It was found that 0.4%Pt30%PMA-MIL-101(Cr)exhibited the best performance for isomerization of n-heptane,with a conversion rate and selectivity at 260°C of 47.6%and 96.6%,respectively.After five hours of reaction,the conversion rate and selectivity of the catalyst remained above 38%and 80%,respectively.展开更多
High-performance proton exchange membranes are of great importance for fuel cells.Here,we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH_(2)(PCP-MCN),a kind of hybrid metal-organic framework,which ...High-performance proton exchange membranes are of great importance for fuel cells.Here,we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH_(2)(PCP-MCN),a kind of hybrid metal-organic framework,which exhibits a superior proton conductivity.PCP-MCN nanoparticles are used as additives to fabricate PCP-MCN/Nafion composite membranes.Microstructures and characteristics of PCP-MCN and these membranes have been extensively investigated.Significant enhancement in proton conduction for PCP-MCN around 55℃ is interestingly found due to the thermal motion of the PCP molecular chains.Robust mechanical properties and higher thermal decomposition temperature of the composite membranes are directly ascribed to strong intermolecular interactions between PCP-MCN and Nafion side chains,i.e.,the formation of substantial acid–base pairs(-SO_(3)^(-)…^(+)H–NH-),which further improves compatibility between additive and Nafion matrix.At the same humidity and temperature condition,the water uptake of composite membranes significantly increases due to the incorporation of porous additives with abundant functional groups and thus less crystallinity degree in comparison to pristine Nafion.Proton conductivity(σ)over wide ranges of humidities(30-100%RH at 25℃)and temperatures(30-98℃ at 100%RH)for prepared membranes is measured.The s in PCPMCN/Nafion composite membranes is remarkably enhanced,i.e.0.245 S/cm for PCP-MCN-3wt.%/Nafion is twice that of Nafion membrane at 98℃ and 100%RH,because of the establishment of well-interconnected proton transport ionic water channels and perhaps faster protonation–deprotonation processes.The composite membranes possess weak humidity-dependence of proton transport and higher water uptake due to excellent water retention ability of PCP-MCN.In particular,when 3 wt.%PCP-MCN was added to Nafion,the power density of a single-cell fabricated with this composite membrane reaches impressively 0.480,1.098 W/cm^(2) under 40%RH,100%RH at 60℃,respectively,guaranteeing it to be a promising proton exchange membrane.展开更多
The construction of rich phase interfaces to increase active reaction area in hybrid materials is an excellent strategy to improve electrochemical performance.Under this guideline,MIL-101@OX-metal organic framework(MO...The construction of rich phase interfaces to increase active reaction area in hybrid materials is an excellent strategy to improve electrochemical performance.Under this guideline,MIL-101@OX-metal organic framework(MOF)is constructed by the"MOF on MOF"method,then converts to MIL-101@NiFe-layered double hydroxides(LDH)by in situ transformation in alkaline solution.MIL-101@NiFe-LDH shows excellent electrochemical water oxidation performance.It needs only an overpotential of 215 m V to drive10 m A/cm^(2)of oxygen evolution reaction(OER),which is less than that of NiFe-LDH,MIL-101.In addition,MIL-101@NiFe-LDH has the smallest Tafel slope(55.1 mV/dec)compared with Ni Fe-LDH(61.1 m V/dec),MIL-101(150.8 m V/dec).The excellent water oxidation activity is due to the high phase interfaces derived from high specific surface area of MOF.This work offers an alternative method for making MOF/LDH heterostructures with an optimized phase interfaces and provides new insights for OER.展开更多
基金the funding support from the National Natural Science Foundation of China(21906072,22006057)the Natural Science Foundation of Jiangsu Province(BK20190982)“Doctor of Mass entrepreneurship and innovation”Project in Jiangsu Province。
文摘The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.
基金National Natural Science Foundation of China(Grant No.22272129).
文摘Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-heptane and inhibit the cracking side reaction.MIL-101(Cr)is a chromium-based metal-organic framework(MOF)with good hydrothermal stability,and exhibits a three-dimensional pore structure that is similar to that of zeolites.Using phosphomolybdic acid(PMA;H3PMo12O40·xH2O)can increase the number of Brønsted acid sites on MIL-101(Cr),which contributes to improving the catalytic performance during isomerization.In this study,0.4%Pt/PMA-MIL-101(Cr)catalyst was successfully crystallized at 220℃using a hydrothermal synthetic method.The results showed that the synthesized samples were mesoporousmicroporous composite materials with the typical octahedral structure,and the MIL-101(Cr)framework was not damaged following modification with PMA.It was found that 0.4%Pt30%PMA-MIL-101(Cr)exhibited the best performance for isomerization of n-heptane,with a conversion rate and selectivity at 260°C of 47.6%and 96.6%,respectively.After five hours of reaction,the conversion rate and selectivity of the catalyst remained above 38%and 80%,respectively.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.12075172,12375288,12205089,and 12105048)National Key R&D Program of China(Grant No.2019YFA0210003)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110817).
文摘High-performance proton exchange membranes are of great importance for fuel cells.Here,we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH_(2)(PCP-MCN),a kind of hybrid metal-organic framework,which exhibits a superior proton conductivity.PCP-MCN nanoparticles are used as additives to fabricate PCP-MCN/Nafion composite membranes.Microstructures and characteristics of PCP-MCN and these membranes have been extensively investigated.Significant enhancement in proton conduction for PCP-MCN around 55℃ is interestingly found due to the thermal motion of the PCP molecular chains.Robust mechanical properties and higher thermal decomposition temperature of the composite membranes are directly ascribed to strong intermolecular interactions between PCP-MCN and Nafion side chains,i.e.,the formation of substantial acid–base pairs(-SO_(3)^(-)…^(+)H–NH-),which further improves compatibility between additive and Nafion matrix.At the same humidity and temperature condition,the water uptake of composite membranes significantly increases due to the incorporation of porous additives with abundant functional groups and thus less crystallinity degree in comparison to pristine Nafion.Proton conductivity(σ)over wide ranges of humidities(30-100%RH at 25℃)and temperatures(30-98℃ at 100%RH)for prepared membranes is measured.The s in PCPMCN/Nafion composite membranes is remarkably enhanced,i.e.0.245 S/cm for PCP-MCN-3wt.%/Nafion is twice that of Nafion membrane at 98℃ and 100%RH,because of the establishment of well-interconnected proton transport ionic water channels and perhaps faster protonation–deprotonation processes.The composite membranes possess weak humidity-dependence of proton transport and higher water uptake due to excellent water retention ability of PCP-MCN.In particular,when 3 wt.%PCP-MCN was added to Nafion,the power density of a single-cell fabricated with this composite membrane reaches impressively 0.480,1.098 W/cm^(2) under 40%RH,100%RH at 60℃,respectively,guaranteeing it to be a promising proton exchange membrane.
基金financially supported by the National Natural Science Foundation of China(No.21808189)the National Natural Science Foundation of Gansu(No.20JR5RA523)the Young Teachers’Research Ability Improvement Project of Northwest Normal University(NWNU-LKQN2020-01)。
文摘The construction of rich phase interfaces to increase active reaction area in hybrid materials is an excellent strategy to improve electrochemical performance.Under this guideline,MIL-101@OX-metal organic framework(MOF)is constructed by the"MOF on MOF"method,then converts to MIL-101@NiFe-layered double hydroxides(LDH)by in situ transformation in alkaline solution.MIL-101@NiFe-LDH shows excellent electrochemical water oxidation performance.It needs only an overpotential of 215 m V to drive10 m A/cm^(2)of oxygen evolution reaction(OER),which is less than that of NiFe-LDH,MIL-101.In addition,MIL-101@NiFe-LDH has the smallest Tafel slope(55.1 mV/dec)compared with Ni Fe-LDH(61.1 m V/dec),MIL-101(150.8 m V/dec).The excellent water oxidation activity is due to the high phase interfaces derived from high specific surface area of MOF.This work offers an alternative method for making MOF/LDH heterostructures with an optimized phase interfaces and provides new insights for OER.