Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on t...Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP m RNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.展开更多
To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (sTBI).Methods All 33 patients with sTBI(GCS≤8) were randomly divided into hyp...To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (sTBI).Methods All 33 patients with sTBI(GCS≤8) were randomly divided into hypothermic group and control group.Microdialysis catheters were inserted into the cerebral cortex of perilesion,relative normal brain tissue and subcutaneous tissue of abdomen in order to analyze the concentrations of lactate/pyruvate (L/P),lactate/glucose (L/G) and the glycerol(Gly) in extracellular fluid (ECF).Results In comparison with the control group,the concentration of L/G,L/P and Gly in periphery and that of L/P in ECF of the “normal brain tissue” were significantly decreased in the hypothermic group.In control group,concentration of L/G,L/P and Gly in periphery were higher than those in relative normal brain.In the hypothermic group,L/P concentration in periphery was higher than that in relative normal brain.Conclusion Mild hypothermia protects brain by decreasing concentrations of L/G,L/P and Gly in periphery and L/P concentration in “normal brain tissue”.The energy crisis and membrane phospholipid breakage in periphery are easier to happen after TBI,where mild hypothermia exerts significant protgective role.12 refs,3 tabs.展开更多
BACKGROUND: Matrix metalloproteinase-9 (MMP-9) expression increases with intracerebral hemorrhage, and participates in the pathophysiological processes of secondary brain injury after intracerebral hemorrhage. OBJE...BACKGROUND: Matrix metalloproteinase-9 (MMP-9) expression increases with intracerebral hemorrhage, and participates in the pathophysiological processes of secondary brain injury after intracerebral hemorrhage. OBJECTIVE: To investigate the effects of mild hypothermia on MMP-9 expression and brain edema in the perihematomal region of experimental intracerebral hemorrhage rats. DESIGN, TIME AND SETTING: The randomized, controlled experiment was performed at the Central Laboratory of Shandong Provincial Hospital between May and September 2007. MATERIALS: Seventy-two, Wistar, male rats, 12-weeks old, were used for this study. Rabbit anti-MMP-9 primary antibody was purchased from Boster, China. METHODS: Wistar rats were equally and randomly divided into normothermia and mild hypothermia groups. The two groups each comprised control, 6-hour intracerebral hemorrhage, 24-hour intracerebral hemorrhage, 48-hour intracerebral hemorrhage, 72-hour intracerebral hemorrhage, and l-week intracerebral hemorrhage subgroups, with six rats in each subgroup. Rat models of intracerebral hemorrhage were established by injecting 100 μL of autologous blood into the rat caudate nucleus. Rats in the mild hypothermia group received four hours of local mild hypothermia immediately following the injection. lntracerebral temperature was maintained at (33 ± 0.5) ℃. Subsequently, intracerebral temperature was spontaneously recovered at 25 ℃. Rats in the control subgroup were not injected with autologous blood and received only with intracerebral hemorrhage. MAIN OUTCOME MEASURES: Brain water content and MMP-9 expression surrounding the hematoma region. RESULTS: MMP-9 expression increased at 6 hours, and brain edema reached a peak at 48 hours after intracerebral hemorrhage. MMP-9 expression was significantly decreased in the mild hypothermia group compared with the normothermia group at each time point (P 〈 0.05). CONCLUSION: Mild hypothermia can significantly inhibit MMP-9 overexpression and relieve brain edema following intracerebral hemorrhage.展开更多
Fractional anisotropy values in diffusion tensor imaging can quantitatively reflect the consistency of nerve fibers after brain damage, where higher values generally indicate less damage to nerve fibers. Therefore, we...Fractional anisotropy values in diffusion tensor imaging can quantitatively reflect the consistency of nerve fibers after brain damage, where higher values generally indicate less damage to nerve fibers. Therefore, we hypothesized that diffusion tensor imaging could be used to evaluate the effect of mild hypothermia on diffuse axona[ injury. A total of 102 patients with diffuse axonal injury were randomly divided into two groups: normothermic and mild hypothermic treatment groups. Patient's modified Rankin scale scores 2 months after mild hypothermia were significant- ly lower than those for the normothermia group. The difference in average fractional anisotropy value for each region of interest before and after mild hypothermia was 1.32-1.36 times higher than the value in the normothermia group. Quantitative assessment of diffusion tensor imaging indicates that mild hypothermia therapy may be beneficial for patients with diffuse axonal injury.展开更多
基金supported by the National Natural Science Foundation of China,No.81303091
文摘Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP m RNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.
文摘To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (sTBI).Methods All 33 patients with sTBI(GCS≤8) were randomly divided into hypothermic group and control group.Microdialysis catheters were inserted into the cerebral cortex of perilesion,relative normal brain tissue and subcutaneous tissue of abdomen in order to analyze the concentrations of lactate/pyruvate (L/P),lactate/glucose (L/G) and the glycerol(Gly) in extracellular fluid (ECF).Results In comparison with the control group,the concentration of L/G,L/P and Gly in periphery and that of L/P in ECF of the “normal brain tissue” were significantly decreased in the hypothermic group.In control group,concentration of L/G,L/P and Gly in periphery were higher than those in relative normal brain.In the hypothermic group,L/P concentration in periphery was higher than that in relative normal brain.Conclusion Mild hypothermia protects brain by decreasing concentrations of L/G,L/P and Gly in periphery and L/P concentration in “normal brain tissue”.The energy crisis and membrane phospholipid breakage in periphery are easier to happen after TBI,where mild hypothermia exerts significant protgective role.12 refs,3 tabs.
基金the Project of Shandong Provincial Health Department, No.2007HW093 the Project of Shandong Provincial Science and Technology Department,No. 003130103
文摘BACKGROUND: Matrix metalloproteinase-9 (MMP-9) expression increases with intracerebral hemorrhage, and participates in the pathophysiological processes of secondary brain injury after intracerebral hemorrhage. OBJECTIVE: To investigate the effects of mild hypothermia on MMP-9 expression and brain edema in the perihematomal region of experimental intracerebral hemorrhage rats. DESIGN, TIME AND SETTING: The randomized, controlled experiment was performed at the Central Laboratory of Shandong Provincial Hospital between May and September 2007. MATERIALS: Seventy-two, Wistar, male rats, 12-weeks old, were used for this study. Rabbit anti-MMP-9 primary antibody was purchased from Boster, China. METHODS: Wistar rats were equally and randomly divided into normothermia and mild hypothermia groups. The two groups each comprised control, 6-hour intracerebral hemorrhage, 24-hour intracerebral hemorrhage, 48-hour intracerebral hemorrhage, 72-hour intracerebral hemorrhage, and l-week intracerebral hemorrhage subgroups, with six rats in each subgroup. Rat models of intracerebral hemorrhage were established by injecting 100 μL of autologous blood into the rat caudate nucleus. Rats in the mild hypothermia group received four hours of local mild hypothermia immediately following the injection. lntracerebral temperature was maintained at (33 ± 0.5) ℃. Subsequently, intracerebral temperature was spontaneously recovered at 25 ℃. Rats in the control subgroup were not injected with autologous blood and received only with intracerebral hemorrhage. MAIN OUTCOME MEASURES: Brain water content and MMP-9 expression surrounding the hematoma region. RESULTS: MMP-9 expression increased at 6 hours, and brain edema reached a peak at 48 hours after intracerebral hemorrhage. MMP-9 expression was significantly decreased in the mild hypothermia group compared with the normothermia group at each time point (P 〈 0.05). CONCLUSION: Mild hypothermia can significantly inhibit MMP-9 overexpression and relieve brain edema following intracerebral hemorrhage.
基金supported by the Natural Science Foundation of Guangdong Province in China,No.10151600101000002
文摘Fractional anisotropy values in diffusion tensor imaging can quantitatively reflect the consistency of nerve fibers after brain damage, where higher values generally indicate less damage to nerve fibers. Therefore, we hypothesized that diffusion tensor imaging could be used to evaluate the effect of mild hypothermia on diffuse axona[ injury. A total of 102 patients with diffuse axonal injury were randomly divided into two groups: normothermic and mild hypothermic treatment groups. Patient's modified Rankin scale scores 2 months after mild hypothermia were significant- ly lower than those for the normothermia group. The difference in average fractional anisotropy value for each region of interest before and after mild hypothermia was 1.32-1.36 times higher than the value in the normothermia group. Quantitative assessment of diffusion tensor imaging indicates that mild hypothermia therapy may be beneficial for patients with diffuse axonal injury.