To understand the strengths and limitations of a low-resolution version of Flexible Global Ocean Atmosphere-Land-Sea-ice (FGOALS-gl) to simulate the climate of the last millennium, the energy balance, climate sensit...To understand the strengths and limitations of a low-resolution version of Flexible Global Ocean Atmosphere-Land-Sea-ice (FGOALS-gl) to simulate the climate of the last millennium, the energy balance, climate sensitivity and absorption feedback of the model are analyzed. Simulation of last-millennium climate was carried out by driving the model with natural (solar radiation and volcanic eruptions) and anthropogenic (greenhouse gases and aerosols) forcing agents. The model feedback factors for (model sensitivity to) different forcings were calculated. The results show that the system feedback factor is about 2.5 (W m-2) K-1 in the pre-industrial period, while 1.9 (W m-2) K-1 in the industrial era. Thus, the model's sensitivity to natural forcing is weak, which explains why it reproduces a weak Medieval Warm Period. The relatively reasonable simulation of the Little Ice Age is caused by both the specified radiative forcing and unforced linear cold drift. The model sensitivity in the industrial era is higher than that of the pre-industrial period. A negative net cloud radiative feedback operates during whole-millennial simulation and reduces the model's sensitivity to specified forcing. The negative net cloud radiative forcing feedback under natural forcing in the period prior to 1850 is due to the underestimation (overestimation) of the response of cloudiness (in-cloud water path). In the industrial era, the strong tropospheric temperature response enlarges the effective radius of ice clouds and reduces the fractional ice content within cloud, resulting in a weak negative net cloud feedback in the industrial period. The water vapor feedback in the industrial era is also stronger than that in the pre-industrial period. Both are in favor of higher model sensitivity and thus a reasonable simulation of the 20th century global warming.展开更多
基金jointly supported by the"Strategic Priority Research Program-Climate Change:Carbon Budget and Related Is-sues"of the Chinese Academy of Sciences(Grant No.XDA05110301)NSFC under Grant Nos.40890054 and 41125017
文摘To understand the strengths and limitations of a low-resolution version of Flexible Global Ocean Atmosphere-Land-Sea-ice (FGOALS-gl) to simulate the climate of the last millennium, the energy balance, climate sensitivity and absorption feedback of the model are analyzed. Simulation of last-millennium climate was carried out by driving the model with natural (solar radiation and volcanic eruptions) and anthropogenic (greenhouse gases and aerosols) forcing agents. The model feedback factors for (model sensitivity to) different forcings were calculated. The results show that the system feedback factor is about 2.5 (W m-2) K-1 in the pre-industrial period, while 1.9 (W m-2) K-1 in the industrial era. Thus, the model's sensitivity to natural forcing is weak, which explains why it reproduces a weak Medieval Warm Period. The relatively reasonable simulation of the Little Ice Age is caused by both the specified radiative forcing and unforced linear cold drift. The model sensitivity in the industrial era is higher than that of the pre-industrial period. A negative net cloud radiative feedback operates during whole-millennial simulation and reduces the model's sensitivity to specified forcing. The negative net cloud radiative forcing feedback under natural forcing in the period prior to 1850 is due to the underestimation (overestimation) of the response of cloudiness (in-cloud water path). In the industrial era, the strong tropospheric temperature response enlarges the effective radius of ice clouds and reduces the fractional ice content within cloud, resulting in a weak negative net cloud feedback in the industrial period. The water vapor feedback in the industrial era is also stronger than that in the pre-industrial period. Both are in favor of higher model sensitivity and thus a reasonable simulation of the 20th century global warming.