The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and...The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and properties of the capsules.In detail,as the concentration of polyvinyl alcohol(PVA)increased from 0 to 8% in the inner phase of the capsules,the diameter of capsules decreased from 3.33 ± 0.01mm to 2.97 ± 0.01 mm,the shell thickness of capsules decreased from 0.183 ± 0.004 mm to 0.155 ± 0.003 mm.While the capsules had round shape and high sphericity.Notably,the capsules with 2% PVA in the inner phase had remarkably decreased water permeability and good morphological stability.Specifically,the end-time of water losing of the capsules was up to 49 days,while the dehydrated capsules maintained spherical appearance,and crushing force of the capsules was up to 13.73 ± 0.79 N,which ensured stability during processing and transportation.This research provides a new strategy for stable encapsulation of small molecules.展开更多
Oil saturation is a critical parameter when designing oil field development plans.This study focuses on the change of oil saturation during water flooding.Particularly,a meter-level artificial model is used to conduct...Oil saturation is a critical parameter when designing oil field development plans.This study focuses on the change of oil saturation during water flooding.Particularly,a meter-level artificial model is used to conduct relevant experiments on the basis of similarity principles and taking into account the layer geological characteristics of the reservoir.The displacement experiment’s total recovery rate is 41.35%.The changes in the remaining oil saturation at a millimeter-scale are examined using medical spiral computer tomography principles.In all experimental stages,regions exists where the oil saturation decline is more than 10.0%.The shrinkage percentage is 20.70%in the horizontal well production stage.The oil saturation reduction in other parts is less than 10.0%,and there are regions where the oil saturation increases in the conventional water flooding stage.展开更多
As femtosecond(fs)laser machining advances from micro/nanoscale to macroscale,approaches capable of machining macroscale geometries that sustain micro/nanoscale precisions are in great demand.In this research,an fs la...As femtosecond(fs)laser machining advances from micro/nanoscale to macroscale,approaches capable of machining macroscale geometries that sustain micro/nanoscale precisions are in great demand.In this research,an fs laser sharp shaping approach was developed to address two key challenges in macroscale machining(i.e.defects on edges and tapered sidewalls).The evolution of edge sharpness(edge transition width)and sidewall tapers were systematically investigated through which the dilemma of simultaneously achieving sharp edges and vertical sidewalls were addressed.Through decreasing the angle of incidence(AOI)from 0◦to−5◦,the edge transition width could be reduced to below 10µm but at the cost of increased sidewall tapers.Furthermore,by analyzing lateral and vertical ablation behaviors,a parameter-compensation strategy was developed by gradually decreasing the scanning diameters along depth and using optimal laser powers to produce non-tapered sidewalls.The fs laser ablation behaviors were precisely controlled and coordinated to optimize the parameter compensations in general manufacturing applications.The AOI control together with the parameter compensation provides a versatile solution to simultaneously achieve vertical sidewalls as well as sharp edges of entrances and exits for geometries of different shapes and dimensions.Both mm-scale diameters and depths were realized with dimensional precisions below 10µm and surface roughness below 1µm.This research establishes a novel strategy to finely control the fs laser machining process,enabling the fs laser applications in macroscale machining with micro/nanoscale precisions.展开更多
Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent elec- tronic properties such as ultrahigh carrier mobility, large threshold current density, and high sa...Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent elec- tronic properties such as ultrahigh carrier mobility, large threshold current density, and high saturation velocity. Recently, much progress has been made in the graphene-based RF field-effect transistors (RF-FETs). Here we present for the first time the high-performance top-gated RF transistors using millimeter-scale single graphene domain on a SiO2/Si substrate through a conventional microfabrication process. A maximum cut-off frequency of 178 GHz and a peak maximum os- cillation frequency of 35 GHz are achieved in the graphene-domain-based FET with a gate length of 50 nm and 150 nm, respectively. This work shows that the millimeter-scale single graphene domain has great potential applications in RF devices and circuits.展开更多
文摘The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and properties of the capsules.In detail,as the concentration of polyvinyl alcohol(PVA)increased from 0 to 8% in the inner phase of the capsules,the diameter of capsules decreased from 3.33 ± 0.01mm to 2.97 ± 0.01 mm,the shell thickness of capsules decreased from 0.183 ± 0.004 mm to 0.155 ± 0.003 mm.While the capsules had round shape and high sphericity.Notably,the capsules with 2% PVA in the inner phase had remarkably decreased water permeability and good morphological stability.Specifically,the end-time of water losing of the capsules was up to 49 days,while the dehydrated capsules maintained spherical appearance,and crushing force of the capsules was up to 13.73 ± 0.79 N,which ensured stability during processing and transportation.This research provides a new strategy for stable encapsulation of small molecules.
基金supported by the National Science and Technology Major Projects of China for Oil and Gas(Projects Nos.2016ZX05010 and 2016ZX05058).
文摘Oil saturation is a critical parameter when designing oil field development plans.This study focuses on the change of oil saturation during water flooding.Particularly,a meter-level artificial model is used to conduct relevant experiments on the basis of similarity principles and taking into account the layer geological characteristics of the reservoir.The displacement experiment’s total recovery rate is 41.35%.The changes in the remaining oil saturation at a millimeter-scale are examined using medical spiral computer tomography principles.In all experimental stages,regions exists where the oil saturation decline is more than 10.0%.The shrinkage percentage is 20.70%in the horizontal well production stage.The oil saturation reduction in other parts is less than 10.0%,and there are regions where the oil saturation increases in the conventional water flooding stage.
基金This study was supported by the National Science Foundation(CMMI 1826392)and the Nebraska Center for Energy Sci-ences Research(NCESR)The research was performed in part in the Nebraska Nanoscale Facility:National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Mater-ials and Nanoscience,which are supported by the National Sci-ence Foundation under Award ECCS:1542182,and the Neb-raska Research Initiative.
文摘As femtosecond(fs)laser machining advances from micro/nanoscale to macroscale,approaches capable of machining macroscale geometries that sustain micro/nanoscale precisions are in great demand.In this research,an fs laser sharp shaping approach was developed to address two key challenges in macroscale machining(i.e.defects on edges and tapered sidewalls).The evolution of edge sharpness(edge transition width)and sidewall tapers were systematically investigated through which the dilemma of simultaneously achieving sharp edges and vertical sidewalls were addressed.Through decreasing the angle of incidence(AOI)from 0◦to−5◦,the edge transition width could be reduced to below 10µm but at the cost of increased sidewall tapers.Furthermore,by analyzing lateral and vertical ablation behaviors,a parameter-compensation strategy was developed by gradually decreasing the scanning diameters along depth and using optimal laser powers to produce non-tapered sidewalls.The fs laser ablation behaviors were precisely controlled and coordinated to optimize the parameter compensations in general manufacturing applications.The AOI control together with the parameter compensation provides a versatile solution to simultaneously achieve vertical sidewalls as well as sharp edges of entrances and exits for geometries of different shapes and dimensions.Both mm-scale diameters and depths were realized with dimensional precisions below 10µm and surface roughness below 1µm.This research establishes a novel strategy to finely control the fs laser machining process,enabling the fs laser applications in macroscale machining with micro/nanoscale precisions.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00600,2011CBA00601,and 2013CBA01604)the National Natural Science Foundation of China(Grant No.60625403)the National Science and Technology Major Project of China(Grant No.2011ZX02707)
文摘Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent elec- tronic properties such as ultrahigh carrier mobility, large threshold current density, and high saturation velocity. Recently, much progress has been made in the graphene-based RF field-effect transistors (RF-FETs). Here we present for the first time the high-performance top-gated RF transistors using millimeter-scale single graphene domain on a SiO2/Si substrate through a conventional microfabrication process. A maximum cut-off frequency of 178 GHz and a peak maximum os- cillation frequency of 35 GHz are achieved in the graphene-domain-based FET with a gate length of 50 nm and 150 nm, respectively. This work shows that the millimeter-scale single graphene domain has great potential applications in RF devices and circuits.