Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly ...Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. Methods In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Results Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. Conclusion MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use.展开更多
Gonorrhea is one of the most common sexually transmitted diseases worldwide. To cure infection and prevent transmission,timely and appropriate antimicrobial therapy is necessary. Unfortunately, Neisseria gonorrhoeae, ...Gonorrhea is one of the most common sexually transmitted diseases worldwide. To cure infection and prevent transmission,timely and appropriate antimicrobial therapy is necessary. Unfortunately, Neisseria gonorrhoeae, the etiological agent of gonorrhea, has acquired nearly all known mechanisms of antimicrobial resistance(AMR), thereby compromising the efficacy of antimicrobial therapy. Treatment failure resulting from AMR has become a global public health concern. Whole-genome sequencing is an effective method to determine the AMR characteristics of N. gonorrhoeae. Compared with next-generation sequencing, the MinION sequencer(Oxford Nanopore Technologies(ONT)) has the advantages of long read length and portability. Based on a pilot study using MinION to sequence the genome of N. gonorrhoeae, we optimized the workflow of sequencing and data analysis in the current study. Here we sequenced nine isolates within one flow cell using a multiplexed sequencing strategy. After hybrid assembly with Illumina reads, nine integral circular chromosomes were obtained. By using the online tool Pathogenwatch and a BLAST-based workflow, we acquired complete AMR profiles related to seven classes of antibiotics. We also evaluated the performance of ONT-only assemblies. Most AMR determinants identified by ONT-only assemblies were the same as those identified by hybrid assemblies. Moreover, one of the nine assemblies indicated a potentially novel antimicrobial-related mutation located in mtrR which results in a frame-shift, premature stop codon, and truncated peptide.In addition, this is the first study using the MinION sequencer to obtain complete genome sequences of N. gonorrhoeae strains which are epidemic in China. This study shows that complete genome sequences and antimicrobial characteristics of N.gonorrhoeae can be obtained using the MinION sequencer in a simple and cost-effective manner, with hardly any knowledge of bioinformatics required. More importantly, this strategy provides us with a potential approach to discover new AMR determinants.展开更多
基金supported by the National key research and development plan(2016TFC1202700,2016YFC1200900)Beijing Municipal Science&Technology Commission project(grant numbers D151100002115003)Guangzhou Municipal Science&Technology Commission project(grant numbers 2015B2150820)
文摘Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. Methods In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Results Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. Conclusion MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use.
基金supported by the Chinese Academy of Medical Sciences Innovation Fund for Medical Science (2016-I2M-3-021)。
文摘Gonorrhea is one of the most common sexually transmitted diseases worldwide. To cure infection and prevent transmission,timely and appropriate antimicrobial therapy is necessary. Unfortunately, Neisseria gonorrhoeae, the etiological agent of gonorrhea, has acquired nearly all known mechanisms of antimicrobial resistance(AMR), thereby compromising the efficacy of antimicrobial therapy. Treatment failure resulting from AMR has become a global public health concern. Whole-genome sequencing is an effective method to determine the AMR characteristics of N. gonorrhoeae. Compared with next-generation sequencing, the MinION sequencer(Oxford Nanopore Technologies(ONT)) has the advantages of long read length and portability. Based on a pilot study using MinION to sequence the genome of N. gonorrhoeae, we optimized the workflow of sequencing and data analysis in the current study. Here we sequenced nine isolates within one flow cell using a multiplexed sequencing strategy. After hybrid assembly with Illumina reads, nine integral circular chromosomes were obtained. By using the online tool Pathogenwatch and a BLAST-based workflow, we acquired complete AMR profiles related to seven classes of antibiotics. We also evaluated the performance of ONT-only assemblies. Most AMR determinants identified by ONT-only assemblies were the same as those identified by hybrid assemblies. Moreover, one of the nine assemblies indicated a potentially novel antimicrobial-related mutation located in mtrR which results in a frame-shift, premature stop codon, and truncated peptide.In addition, this is the first study using the MinION sequencer to obtain complete genome sequences of N. gonorrhoeae strains which are epidemic in China. This study shows that complete genome sequences and antimicrobial characteristics of N.gonorrhoeae can be obtained using the MinION sequencer in a simple and cost-effective manner, with hardly any knowledge of bioinformatics required. More importantly, this strategy provides us with a potential approach to discover new AMR determinants.