Unified Power Quality Controller(UPQC) was proposed to comprehensively improve power quality of coal mine power network and its basic structure and operation principle was introduced. In order to overcome time lag o...Unified Power Quality Controller(UPQC) was proposed to comprehensively improve power quality of coal mine power network and its basic structure and operation principle was introduced. In order to overcome time lag of Active Power Filter(APF) in compensating harmonic and reactive current, a novel method based on gray system theory was proposed to predict harmonic current and other distortion component. The mathematical model of component to be compensated was constructed by data sequence of distortion component, which could exactly forecast compensation signal of next period. The optimal control strategy was selected according to the principle of output signal approaching component to be compensated as near as possible. Before predicating each time the oldest data was eliminated while the latest data was added to data sequence. Then new predication model was established once again. The results show that the method can always construct mathematical model with variation of system parameters, reflect the latest state of system and not increase calculation quantity. The feasible and effective control strategy can improve power quality of coal mine power network.展开更多
An augmented proportional-integral sliding surface was designed for a sliding mode controller. A chatter free sliding mode control strategy for a chaotic coal mine power grid was developed. The stability of the contro...An augmented proportional-integral sliding surface was designed for a sliding mode controller. A chatter free sliding mode control strategy for a chaotic coal mine power grid was developed. The stability of the control strategy was proven by Lyapunov stability theorem. The proposed sliding mode control strategy eliminated the chattering phenomenon by replacing the sign function with a saturation function, and by replacing the constant coefficients in the reaching law with adaptive ones. An immune genetic algorithm was used to optimize the parameters in the improved reaching law. The cut-in time of the controllers was optimized to reduce the peak energy of their output. Simulations showed that the proposed sliding mode controller has good, chatter flee performance.展开更多
文摘Unified Power Quality Controller(UPQC) was proposed to comprehensively improve power quality of coal mine power network and its basic structure and operation principle was introduced. In order to overcome time lag of Active Power Filter(APF) in compensating harmonic and reactive current, a novel method based on gray system theory was proposed to predict harmonic current and other distortion component. The mathematical model of component to be compensated was constructed by data sequence of distortion component, which could exactly forecast compensation signal of next period. The optimal control strategy was selected according to the principle of output signal approaching component to be compensated as near as possible. Before predicating each time the oldest data was eliminated while the latest data was added to data sequence. Then new predication model was established once again. The results show that the method can always construct mathematical model with variation of system parameters, reflect the latest state of system and not increase calculation quantity. The feasible and effective control strategy can improve power quality of coal mine power network.
基金the National Natural Science Foundation of China (No. 51107143)the Fundamental Research Funds for the Central Universities (No. 2010QNB33)
文摘An augmented proportional-integral sliding surface was designed for a sliding mode controller. A chatter free sliding mode control strategy for a chaotic coal mine power grid was developed. The stability of the control strategy was proven by Lyapunov stability theorem. The proposed sliding mode control strategy eliminated the chattering phenomenon by replacing the sign function with a saturation function, and by replacing the constant coefficients in the reaching law with adaptive ones. An immune genetic algorithm was used to optimize the parameters in the improved reaching law. The cut-in time of the controllers was optimized to reduce the peak energy of their output. Simulations showed that the proposed sliding mode controller has good, chatter flee performance.