In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord...In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.展开更多
It has been noted that when the convective Richardson number Ri* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the i...It has been noted that when the convective Richardson number Ri* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the invalidity of parcel theory. However, evidence shows that the convective Richardson number Ri* might be an improper characteristic scaling parameter for the entrainment process. An attempt to use an innovative parameter to parameterize the entrainment-zone thickness has been made in this paper. Based on the examination of the data of water-tank experiments and atmospheric measurements, it is found that the total lapse rate of potential temperature across the entrainment zone is proportional to that of the capping inversion layer. Inserting this relationship into the so-called parcel theory, it thus gives a new parameterization scheme for the depth of the entrainment zone. This scheme includes the lapse rate of the capping inversion layer that plays an important role in the entrainment process. Its physical representation is reasonable. The new scheme gives a better ordering of the data measured in both water-tank and atmosphere as compared with the traditional method using Ri*. These indicate that the parcel theory can describe the entrainment process suitably and that the new parameter is better than Ri*.展开更多
The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits(mixed zone). Its of fshore seabed is shallow, which makes it vulnerable to serious marine meteorological disas...The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits(mixed zone). Its of fshore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacific tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, significant wave height, and salinity(SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass(NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct influence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the influence of tropical cyclones on the NYSCWM.展开更多
The uncertainty and sensitivity of predicted positions and thicknesses of seawater-freshwater mixing zones with respect to uncertainties of saturated hydraulic conductivity, porosity, molecular diffusivity, longitudin...The uncertainty and sensitivity of predicted positions and thicknesses of seawater-freshwater mixing zones with respect to uncertainties of saturated hydraulic conductivity, porosity, molecular diffusivity, longitudinal and transverse dispersivities were investigated in both head-control and flux-control inland boundary systems. It shows that uncertainties and sensitivities of predicted results vary in different boundary systems. With the same designed matrix of uncertain factors in simulation experiments, the variance of predicted positions and thickness in the flux-control system is much larger than that predicted in the head-control system. In a head-control system, the most sensitive factors for the predicted position of the mixing zone are inland freshwater head and transverse dispersivity. However, the predicted position of the mixing zone is more sensitive to saturated hydraulic conductivity in a flux-control system. In a head-control system, the most sensitive factors for the predicted thickness of the mixing zone include transverse dispersivity, molecular diffusivity, porosity, and longitudinal dispersivity, but the predicted thickness is more sensitive to the saturated hydraulic conductivity in a flux-control system. These findings improve our understandings for the development of seawater-freshwater mixing zone during seawater intrusion processes, and give technical support for groundwater resource management in coastal aquifers.展开更多
In this research we proposed a strategy for location privacy protection which addresses the issues related with existing location privacy protection techniques. Mix-Zones and pseudonyms are considered as the basic bui...In this research we proposed a strategy for location privacy protection which addresses the issues related with existing location privacy protection techniques. Mix-Zones and pseudonyms are considered as the basic building blocks for location privacy; however, continuously changing pseudonyms process at multiple locations can enhance user privacy. It has been revealed that changing pseudonym at improper time and location may threat to user's privacy. Moreover, certain methods related to pseudonym change have been proposed to attain desirable location privacy and most of these solutions are based upon velocity, GPS position and direction of angle. We analyzed existing methods related to location privacy with mix zones, such as RPCLP, EPCS and MODP, where it has been observed that these methods are not adequate to attain desired level of location privacy and suffered from large number of pseudonym changes. By analyzing limitations of existing methods, we proposed Dynamic Pseudonym based multiple mix zone(DPMM) technique, which ensures highest level of accuracy and privacy. We simulate our data by using SUMO application and analysis results has revealed that DPMM outperformed existing pseudonym change techniques and achieved better results in terms of acquiring high privacy with small number of pseudonym change.展开更多
Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respect...Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respecting the hydraulic conditions in the outfall to prevent sedimentation in the outfall or their accumulation in adjacent areas; also it includes the ways used to improve the outfall hydraulic capacity that decreases with time. The diagnostics and remediation procedures of mixing zones are discussed, especially in the case of previous toxic discharge that results in toxic sediments at the bed load. A literature review of techniques used to assess sediment quality near discharge points and locate effluent-affected sediment deposit is presented that include using acoustic profiles and images, chemical analysis, toxicity tests and multivariate indicators.展开更多
This pilot study intended to investigate the application of Mixing Zone Guidelines in northern Sweden. The EC (European Commission)-Mixing Zone Guidelines were applied to seven effluent discharges. The effluents wer...This pilot study intended to investigate the application of Mixing Zone Guidelines in northern Sweden. The EC (European Commission)-Mixing Zone Guidelines were applied to seven effluent discharges. The effluents were from industrial processes used in the Ronnskar smelter, in northern Sweden. Each outlet in the smelter area discharges water into the Bothnian bay of the Baltic Sea. Cadmium (Cd), mercury (Hg), nickel (Ni) and lead (Pb) were the primary substances present in the effluents. A "Tiered Approach" was followed for mixing zone assessments in each of the discharge points. Discharge Test was used at Tier 2 and CORMIX (Cornell Mixing Zone Expert System model), version 7, at Tier 3. At each discharge point, the AA-EQS (annual average-environmental quality standard) for each metal was met within a distance of 500 m from the outfalls. This distance was exceeded to meet the MAC-EQS (maximum allowable concentration-environmental quality standard) criteria at points 1 and 3 for total Hg concentrations. However, for the proper application of Mixing Zone Guidelines, a version of the Discharge Test for coastal waters should be developed and used. The decision at which tier the dissolved metal concentration should be compared with EQS values could depend on the effluent characteristics. For Swedish coastal waters, some consideration should be given to the background concentration of metals.展开更多
El Ni?o–Southern Oscillation(ENSO) exhibits a distinctive phase-locking characteristic, first expressed during its onset in boreal spring, developing during summer and autumn, reaching its peak towards winter, and de...El Ni?o–Southern Oscillation(ENSO) exhibits a distinctive phase-locking characteristic, first expressed during its onset in boreal spring, developing during summer and autumn, reaching its peak towards winter, and decaying over the next spring. Several studies have demonstrated that this feature arises as a result of seasonal variation in the growth rate of ENSO as expressed by the sea surface temperature(SST). The bias towards simulating the phase locking of ENSO by many state-of-the-art climate models is also attributed to the unrealistic depiction of the growth rate. In this study, the seasonal variation of SST growth rate in the Ni?o-3.4 region(5°S–5°N, 120°–170°W) is estimated in detail based on the mixed layer heat budget equation and recharge oscillator model during 1981–2020. It is suggested that the consideration of a variable mixed layer depth is essential to its diagnostic process. The estimated growth rate has a remarkable seasonal cycle with minimum rates occurring in spring and maximum rates evident in autumn. More specifically, the growth rate derived from the meridional advection(surface heat flux) is positive(negative) throughout the year. Vertical diffusion generally makes a negative contribution to the evolution of growth rate and the magnitude of vertical entrainment represents the smallest contributor. Analysis indicates that the zonal advective feedback is regulated by the meridional immigration of the intertropical convergence zone, which approaches its southernmost extent in February and progresses to its northernmost location in September, and dominates the seasonal variation of the SST growth rate.展开更多
基金funded by the National Natural Science Foundation of China(Nos.51974213 and 52174324)。
文摘In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.
基金This paper was supported by the National Natural Science Foundation of China under Grant Nos.40105002 and 40333027.
文摘It has been noted that when the convective Richardson number Ri* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the invalidity of parcel theory. However, evidence shows that the convective Richardson number Ri* might be an improper characteristic scaling parameter for the entrainment process. An attempt to use an innovative parameter to parameterize the entrainment-zone thickness has been made in this paper. Based on the examination of the data of water-tank experiments and atmospheric measurements, it is found that the total lapse rate of potential temperature across the entrainment zone is proportional to that of the capping inversion layer. Inserting this relationship into the so-called parcel theory, it thus gives a new parameterization scheme for the depth of the entrainment zone. This scheme includes the lapse rate of the capping inversion layer that plays an important role in the entrainment process. Its physical representation is reasonable. The new scheme gives a better ordering of the data measured in both water-tank and atmosphere as compared with the traditional method using Ri*. These indicate that the parcel theory can describe the entrainment process suitably and that the new parameter is better than Ri*.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(No.XDA11020305)the National Natural Science Foundation of China(No.41576032)the International Cooperation in Key Projects,CAS(Detection of Oil Spill and Its Ecological Impact(No.133337KYSB20160002)
文摘The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits(mixed zone). Its of fshore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacific tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, significant wave height, and salinity(SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass(NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct influence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the influence of tropical cyclones on the NYSCWM.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51309091,51239003 and 51279045)the Postdoctoral Science Foundation of China(Grant No.2012M520989)
文摘The uncertainty and sensitivity of predicted positions and thicknesses of seawater-freshwater mixing zones with respect to uncertainties of saturated hydraulic conductivity, porosity, molecular diffusivity, longitudinal and transverse dispersivities were investigated in both head-control and flux-control inland boundary systems. It shows that uncertainties and sensitivities of predicted results vary in different boundary systems. With the same designed matrix of uncertain factors in simulation experiments, the variance of predicted positions and thickness in the flux-control system is much larger than that predicted in the head-control system. In a head-control system, the most sensitive factors for the predicted position of the mixing zone are inland freshwater head and transverse dispersivity. However, the predicted position of the mixing zone is more sensitive to saturated hydraulic conductivity in a flux-control system. In a head-control system, the most sensitive factors for the predicted thickness of the mixing zone include transverse dispersivity, molecular diffusivity, porosity, and longitudinal dispersivity, but the predicted thickness is more sensitive to the saturated hydraulic conductivity in a flux-control system. These findings improve our understandings for the development of seawater-freshwater mixing zone during seawater intrusion processes, and give technical support for groundwater resource management in coastal aquifers.
基金supported by the National Natural Science Foundation of China (Grant No.61401040,Grant No.61372110)
文摘In this research we proposed a strategy for location privacy protection which addresses the issues related with existing location privacy protection techniques. Mix-Zones and pseudonyms are considered as the basic building blocks for location privacy; however, continuously changing pseudonyms process at multiple locations can enhance user privacy. It has been revealed that changing pseudonym at improper time and location may threat to user's privacy. Moreover, certain methods related to pseudonym change have been proposed to attain desirable location privacy and most of these solutions are based upon velocity, GPS position and direction of angle. We analyzed existing methods related to location privacy with mix zones, such as RPCLP, EPCS and MODP, where it has been observed that these methods are not adequate to attain desired level of location privacy and suffered from large number of pseudonym changes. By analyzing limitations of existing methods, we proposed Dynamic Pseudonym based multiple mix zone(DPMM) technique, which ensures highest level of accuracy and privacy. We simulate our data by using SUMO application and analysis results has revealed that DPMM outperformed existing pseudonym change techniques and achieved better results in terms of acquiring high privacy with small number of pseudonym change.
文摘Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respecting the hydraulic conditions in the outfall to prevent sedimentation in the outfall or their accumulation in adjacent areas; also it includes the ways used to improve the outfall hydraulic capacity that decreases with time. The diagnostics and remediation procedures of mixing zones are discussed, especially in the case of previous toxic discharge that results in toxic sediments at the bed load. A literature review of techniques used to assess sediment quality near discharge points and locate effluent-affected sediment deposit is presented that include using acoustic profiles and images, chemical analysis, toxicity tests and multivariate indicators.
文摘This pilot study intended to investigate the application of Mixing Zone Guidelines in northern Sweden. The EC (European Commission)-Mixing Zone Guidelines were applied to seven effluent discharges. The effluents were from industrial processes used in the Ronnskar smelter, in northern Sweden. Each outlet in the smelter area discharges water into the Bothnian bay of the Baltic Sea. Cadmium (Cd), mercury (Hg), nickel (Ni) and lead (Pb) were the primary substances present in the effluents. A "Tiered Approach" was followed for mixing zone assessments in each of the discharge points. Discharge Test was used at Tier 2 and CORMIX (Cornell Mixing Zone Expert System model), version 7, at Tier 3. At each discharge point, the AA-EQS (annual average-environmental quality standard) for each metal was met within a distance of 500 m from the outfalls. This distance was exceeded to meet the MAC-EQS (maximum allowable concentration-environmental quality standard) criteria at points 1 and 3 for total Hg concentrations. However, for the proper application of Mixing Zone Guidelines, a version of the Discharge Test for coastal waters should be developed and used. The decision at which tier the dissolved metal concentration should be compared with EQS values could depend on the effluent characteristics. For Swedish coastal waters, some consideration should be given to the background concentration of metals.
基金supported by the National Natural Science Foundation of China (Grant No. 42192564)Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030004)the Ministry of Science and Technology of the People's Republic of China (Grant No.2020YFA0608802)。
文摘El Ni?o–Southern Oscillation(ENSO) exhibits a distinctive phase-locking characteristic, first expressed during its onset in boreal spring, developing during summer and autumn, reaching its peak towards winter, and decaying over the next spring. Several studies have demonstrated that this feature arises as a result of seasonal variation in the growth rate of ENSO as expressed by the sea surface temperature(SST). The bias towards simulating the phase locking of ENSO by many state-of-the-art climate models is also attributed to the unrealistic depiction of the growth rate. In this study, the seasonal variation of SST growth rate in the Ni?o-3.4 region(5°S–5°N, 120°–170°W) is estimated in detail based on the mixed layer heat budget equation and recharge oscillator model during 1981–2020. It is suggested that the consideration of a variable mixed layer depth is essential to its diagnostic process. The estimated growth rate has a remarkable seasonal cycle with minimum rates occurring in spring and maximum rates evident in autumn. More specifically, the growth rate derived from the meridional advection(surface heat flux) is positive(negative) throughout the year. Vertical diffusion generally makes a negative contribution to the evolution of growth rate and the magnitude of vertical entrainment represents the smallest contributor. Analysis indicates that the zonal advective feedback is regulated by the meridional immigration of the intertropical convergence zone, which approaches its southernmost extent in February and progresses to its northernmost location in September, and dominates the seasonal variation of the SST growth rate.