期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Effect of Al_(2)O_(3)/CaO on the melting and mineral transformation of Ningdong coal ash 被引量:3
1
作者 Feng Wang Min Yao +4 位作者 Haoyong Kan Jianping Kuang Ping Li Jiashuo Zhang Yixin Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期3110-3116,共7页
Coal ash melting characteristics has a direct impact on the smooth operation of entrained gasifier.Mineral conversion of coal ash is very significant to be investigated,because the mineral can affect the melting tempe... Coal ash melting characteristics has a direct impact on the smooth operation of entrained gasifier.Mineral conversion of coal ash is very significant to be investigated,because the mineral can affect the melting temperature and viscosity under high temperature conditions.In this paper,the effects of different Al2O3/CaO on the mineral conversion,melting temperature and viscosity of Ningdong coal ash are studied by the combination of experiment and simulation.The trend of melting temperature decreases firstly and rises with increasing Al_(2)O_(3)/CaO.The ashmelting point reached to the lowestwhen the ratio is 1.23.XRD and Factsage software are used to analyze crystallization behavior of samples.The results showthat the content of anorthite,albite and corundumincreases and subsequently decreases,while the content of mullite decreases firstly and then rises with increasing Al_(2)O_(3)/CaO.High content with CaO can contribute to form albite and anorthite of low-melting.Besides,high content with Al_(2)O_(3) can tend to produce mullite of high-melting.The results of experimental and simulation are basically the same,which lays a foundation for the melting characteristics of Ningdong coal ash and can provide technical support for the smooth operation of the entrained-gasifier. 展开更多
关键词 Melting characteristics VISCOSITY mineral transformation Al_(2)O_(3)/CaO
下载PDF
Patterns of Clay Minerals Transformation in Clay Gouge, with Examples from Revers Fault Rocks in Devonina Niqiuhe Formation in The Dayangshu Basin 被引量:2
2
作者 MENG Jie LI Benxian +1 位作者 ZHANG Juncheng LIU Xiaoyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期59-60,共2页
The role of authigenic clay growth in clay gouge is increasingly recognized as a key to understanding the mechanics of berittle faulting and fault zone processes,including creep and seismogenesis,and providing new ins... The role of authigenic clay growth in clay gouge is increasingly recognized as a key to understanding the mechanics of berittle faulting and fault zone processes,including creep and seismogenesis,and providing new insights into the ongoing debate about the frictional strength of brittle fault(Haines and van der Pluijm,2012).However,neither the conditions nor the processes which 展开更多
关键词 with Examples from Revers Fault Rocks in Devonina Niqiuhe Formation in The Dayangshu Basin Patterns of Clay minerals Transformation in Clay Gouge
下载PDF
Formation of Foliations and their Related Minerals from Diagenetic to Medium-grade Metamorphic Rocks:A Case Study of the Hongyanjing and Liao-Ji Backarc Basins,China
3
作者 TIAN Zhonghua WEN Fei +2 位作者 LIU Fulai ZHU Haozhong YE Zhanghuang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第4期1158-1170,共13页
Deciphering the relationship between polyphase tectonic foliations and their associated mineral assemblages is significant in understanding the process from diagenesis to low-/medium-/high-grade metamorphism.It can pr... Deciphering the relationship between polyphase tectonic foliations and their associated mineral assemblages is significant in understanding the process from diagenesis to low-/medium-/high-grade metamorphism.It can provide information related to strain,metamorphic conditions and overprinting relationships and so help reveal the tectonic evolution of orogenesis.In this study,we predominately focus on the formation of foliations and their related minerals,as developed in two separate basins.First of all,two stages of axial plane cleavages(S1 and S2)were recognized in the Hongyanjing inter-arc basin,the formation of the S1 axial plane cleavage is associated with mica rotation and elongation in mudstones in the local area.The pencil structure of S2 formed during the refolding phase,the minerals in the sedimentary rocks not changing their shape and orientation.Secondly,in the Liao-Ji backarc basin,foliations include diagenetic foliation(bedding parallel foliation),tectonic S1 foliation(secondary foliation or axial plane cleavage of S0 folding)and crenulation cleavage(S2).The formation mechanism of foliation changes from mineral rotation or elongation and mineral solution transfer in S1 to crystal-plastic deformation,dynamic recrystallization and micro-folding in S2.Many index metamorphic minerals formed from low-grade to medium-grade consist of biotites,garnets,staurolite and kyanite,constituting a typical Barrovian metamorphic belt.Accordingly,a new classification of foliation is presented in this study.The foliations can be divided into continuous and disjunctive foliations,based on the existence of microlithons,detectable with the aid of a microscope.Disjunctive foliation can be further sub-divided into spaced foliation and crenulation cleavage,according to whether(or not)crenulation(micro-folding)is present.The size of the mineral grains is also significant for classification of the foliations. 展开更多
关键词 new classification of foliations mineral transformation OROGENESIS Hongyanjing basin Liao-Ji backarc basin
下载PDF
Experimental Study of the Melting Reaction and Genetic Mechanism of Mineral Phase Transformation in Granulite Facies Metamorphism
4
作者 Liu Fulai, Shen Qihan, Geng Yuansheng Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037Xu Xuechun and Ma Rui Open Laboratory, Changchun College of Geology, Changchun, Jilin 130026 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1997年第4期407-422,511,共17页
The high-temperature and high-pressure experiment on natural block rock indicates that dehydration-melting of hydrous biotite (Bi) and partial melting of felsic minerals in garnet-biotite-plagioclase gneiss are mainly... The high-temperature and high-pressure experiment on natural block rock indicates that dehydration-melting of hydrous biotite (Bi) and partial melting of felsic minerals in garnet-biotite-plagioclase gneiss are mainly controlled by temperature, while mineral phase transformation is not only controlled by temperature-pressure conditions but also genetically associated with hydrous mineral dehydration-melting and partial melting of felsic minerals. According to the characteristics of biotite dehydration-melting and garnet transformation reaction, three stages may be distinguished: (1) when the experimental temperature is 700℃, biotite transforms to ilmenite (Ilm) + magnetite (Mt) + H2O and garnet to magnetite (Mt); (2) when the temperature is 730-760℃, biotite is dehydrated and melted and transformed into K2O-rich melt + Ilm + Mt, and garnet, into hypersthene (Hy) + cordierite (Crd); (3) when the temperature is up to or higher than 790℃, biotite is dehydrated and melted and transformed into melt + Hy + Ilm + Mt, and garnet, into the hypersthene (Hy) + spinel (Sp) + cordierite (Crd) assemblage. The melt proportion and its evolutionary characteristics are mainly controlled by dehydration-melting of hydrous minerals and partial melting of felsic minerals besides P-T conditiops: In addition to the traditional solid 4- solid (or fluid) reaction and dehydration-melting reaction, the metamorphic reaction involving melts (reaction between unmelted minerals and melts) is one of the most important reactions in granulite facies metamorphism and its attendant remelting (or regional migmatization). This experiment may provide dependable experimental data for an in-depth study of the genetic mechanism of mineral assemblage evolution and its geological dynamic significance in granulite facies metamorphism of the studied area. 展开更多
关键词 mineral phase transformation melting reaction genetic mechanism granulite facies garnet-biotite-plagioclase gneiss experiment
下载PDF
The simulation of the geological transformation of betulin by mineral clays
5
《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 1999年第S1期283-283,共1页
关键词 The simulation of the geological transformation of betulin by mineral clays
下载PDF
Effects of deep alkaline and acidic fluids on reservoir developed in fault belt of saline lacustrine basin
6
作者 Lei-Lei Yang Xin-Wei Li +4 位作者 Guo Wei Yi-Dan Liu Qin-Gong Zhuo Zhi-Chao Yu Zhi-Ye Gao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期776-786,共11页
Through the long development processes of reservoir sedimentation and diagenesis, acidic and alkaline fluids play key roles in controlling deep reservoir development. However, the ways in which deep fluids control and... Through the long development processes of reservoir sedimentation and diagenesis, acidic and alkaline fluids play key roles in controlling deep reservoir development. However, the ways in which deep fluids control and transform the reservoir under complex fault conditions remain unclear. In this study, a 2D model was established based on a typical sub-salt to intra-salt vertical profile in the Qaidam Basin, China. Based on measured data, multiphase flow reaction and solute transport simulation technology were used to analyze fluids flow and migration in the intra-salt and sub-salt reservoirs, determine the mineral dissolution, precipitation, and transformation in the reservoir caused by the deep fluids, and calculate the changes in reservoir porosity. Results show that deep fluid migrates preferentially along dominant channels and triggers a series of fluid–rock chemical reactions. In the first stage, a large amount of anhydrite precipitated in the fault as a result of upward migration of deep saline fluid, resulting in the formation of anhydrite veins and blockage at the base of the fault. In the second stage, organic acids caused minerals dissolution and a vertical channel was opened in previously blocked area, which promoted continuous upward migration of organic acids and the formation of secondary pores. This study clarifies the transformative effects of deep alkaline and acidic fluids on the reservoir. Moreover, the important fluid transport role of faults and their effect on reservoir development were determined. 展开更多
关键词 Saline lacustrine basin Alkaline and acidic fluids Fault-belt reservoir mineral transformation Physical conditions
下载PDF
Differences in CO_(2)-Water-Rock Chemical Reactions among ’Sweet Spot’ Reservoirs:Implications for Carbon Sequestration
7
作者 YANG Leilei SONG Ziyang +5 位作者 LIU Yi WEI Guo ZHANG Xing MO Chenchen FENG Bo LI Yaohua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期972-985,共14页
The Lucaogou Formation,located in the Jimsar Sag,Junggar Basin,NW China,has great potential for shale oil resources.In the process of CO_(2)-EOR(CO_(2) enhance oil recovery),mineral dissolution,precipitation and trans... The Lucaogou Formation,located in the Jimsar Sag,Junggar Basin,NW China,has great potential for shale oil resources.In the process of CO_(2)-EOR(CO_(2) enhance oil recovery),mineral dissolution,precipitation and transformation,leading to the local corrosion or blockage of reservoirs,have a significant influence on recovery.In this study,a combination of high-temperature and high-pressure laboratory experiments and coupled temperature/fluid-chemistry multifield numerical simulations are used to investigate CO_(2)-water-rock reactions under various reservoir conditions in the upper and lower ’sweet spots’,to reveal the mechanisms underlying CO_(2)-induced mineral dissolution,precipitation and transformation.In addition,we quantitatively calculated the evolution of porosity over geological timescales;compared and analyzed the variability of CO_(2) transformation in the reservoir under a variety of temperature,lithology and solution conditions;and identified the main factors controlling CO_(2)-water-rock reactions,the types of mineral transformation occurring during long-term CO_(2) sequestration and effective carbon sequestration minerals.The results demonstrate that the main minerals undergoing dissolution under the influence of supercritical CO_(2) are feldspars,while the main minerals undergoing precipitation include carbonate rock minerals,clay minerals and quartz.Feldspar minerals,especially the initially abundant plagioclase in the formation,directly affects total carbon sequestration,feldspar-rich clastic rocks therefore having considerable sequestration potential. 展开更多
关键词 CO_(2) water-rock reactions mineral transformation carbon sequestration
下载PDF
An advanced ash fusion study on the melting behaviour of coal,oil shale and blends under gasification conditions using picture analysis and graphing method 被引量:1
8
作者 Yang Meng Peng Jiang +7 位作者 Yuxin Yan Yuxin Pan Xinyun Wu Haitao Zhao Nusrat Sharmin Edward Lester Tao Wu Cheng Heng Pang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期393-407,共15页
This study investigates the potential of solid fuel blending as an effective approach to manipulate ash melting behaviour to alleviate ashrelated problems during gasification,thus improving design,operability and safe... This study investigates the potential of solid fuel blending as an effective approach to manipulate ash melting behaviour to alleviate ashrelated problems during gasification,thus improving design,operability and safety.The ash fusion characteristics of Qinghai bituminous coal together with Fushun,Xinghua and Laoheishan oil shales(and their respective blends)were quantified using a novel picture analysis and graphing method,which incorporates conventional ash fusion study,dilatometry and sintering strength test,in a CO/CO_(2)atmosphere.This imagebased characterisation method was used to monitor and quantify the complete melting behaviour of ash samples from room temperature to 1520℃.The impacts of blending on compositional changes during heating were determined experimentally via Xray diffraction and validated computationally using FactSage.Results showed that the melting point of Qinghai coal ash to be the lowest at 1116℃,but would increase up to 1208℃,1161℃and 1160℃with the addition of 30%50%of Laoheishan,Fushun,and Xinghua oil shales,respectively.The formation of highmelting anorthite and mullite structures inhibits the formation of lowmelting hercynite.However,the sintering point of Qinghai coal ash was seen to decrease from 1005℃to 855℃,834℃,and 819℃in the same blends due to the formation of lowmelting aluminosilicate.Results also showed that blending directly influences the sintering strength during the various stages of melting.The key finding from this study is that it is possible to mitigate against the severe ash slagging and fouling issue arising from high calcium and iron coals by cogasification with a high silicaalumina oil shale.Moreover,blending coals with oil shales can also modify the ash melting behaviour of fuels to create the optimal ash chemistry that meets the design specification of the gasifier,without adversely affecting thermal performance. 展开更多
关键词 Oil shale COAL Image-based ash fusion test CO-GASIFICATION mineral transformation
下载PDF
Dynamic Rheological Behavior of Low Water-to-binder Ratio Mortars under Large Amplitude Oscillatory Shear(LAOS)
9
作者 何真 JIANG Rui LI Yang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期608-618,共11页
This work focuses on the dynamic rheological behavior of low water-to-binder ratio cement mortars blended with fly ash microspheres(FAM) or silica fume(SF). The initial slump flow of each group has been controlled... This work focuses on the dynamic rheological behavior of low water-to-binder ratio cement mortars blended with fly ash microspheres(FAM) or silica fume(SF). The initial slump flow of each group has been controlled at similar values by adjusting the superplasticizer dosages. With the help of a coaxial cylinder rheometer, the dynamic rheological behaviors of these mortars are investigated by frequency sweeping in the range of 0-2 Hz under large amplitude oscillatory shear(LAOS). Based on the systematical elaboration of dynamic rheological testing theory, the experimental data are processed according to Lissajous plot fitting to reveal the viscoelastic characteristics. The nonlinearity of response signals is further assessed with Fourier transform(FT) analysis. The parameters, storage modulus G', loss modulus G" and relative amplitude I3/I1 are proposed to clarify the influences of FAM and SF on the stability and energy consumption of local structures and nonlinearity of response torques. The hydration characteristics of various groups well confirmed the rheological phenomenon. This study is beneficial for the preparation and optimization of flow state concrete such as pumping concrete and self-compacting concrete. 展开更多
关键词 dynamic rheology viscoelastic behavior LAOS mortar mineral admixture Lissajous plots Fourier transform
下载PDF
The effect of extracellular polymeric substances (EPS) of iron-oxidizing bacteria (Ochrobactrum EEELCW01) on mineral transformation and arsenic (As) fate
10
作者 Chuan Wu Yueru Chen +4 位作者 Ziyan Qian Hongren Chen Waichin Li Qihou Li Shengguo Xue 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第8期187-196,共10页
Extracellular polymeric substances(EPS)are an importantmedium for communication and material exchange between iron-oxidizing bacteria and the external environment and could induce the iron(oxyhydr)oxides production wh... Extracellular polymeric substances(EPS)are an importantmedium for communication and material exchange between iron-oxidizing bacteria and the external environment and could induce the iron(oxyhydr)oxides production which reduced arsenic(As)availability.The main component of EPS secreted by iron-oxidizing bacteria(Ochrobactrum EEELCW01)was composed of polysaccharides(150.76-165.33 mg/g DW)followed by considerably smaller amounts of proteins(12.98–16.12 mg/g DW).Low concentrations of As(100 or 500μmol/L)promoted the amount of EPS secretion.FTIR results showed that EPS was composed of polysaccharides,proteins,and a miniscule amount of nucleic acids.The functional groups including-COOH,-OH,-NH,-C=O,and-C-O played an important role in the adsorption of As.XPS results showed that As was bound to EPS in the form of As3+.With increasing As concentration,the proportion of As3+adsorbed on EPS increased.Ferrihydrite with a weak crystalline state was only produced in the system at 6 hr during the mineralization process of Ochrobactrum sp.At day 8,the minerals were composed of goethite,galena,and siderite.With the increasing mineralization time,the main mineral phases were transformed from weakly crystalline hydrous iron ore into higher crystallinity siderite(FeCO_(3))or goethite(α-FeOOH),and the specific surface area and active sites of minerals were reduced.It can be seen from the distribution of As elements that As is preferentially adsorbed on the edges of iron minerals.This study is potential to understand the biomineralizationmechanism of iron-oxidizing bacteria and As remediation in the environment. 展开更多
关键词 Iron-oxidizing bacteria Extracellular polymeric substances (EPS) Arsenic(As) BIOmineralIZATION mineral phases transformation
原文传递
Microbially-mediated formation of Ca-Fe carbonates during dissimilatory ferrihydrite reduction:Implications for the origin of sedimentary ankerite
11
作者 Deng LIU Jinpeng CAO +8 位作者 Shanshan YANG Yating YIN Pengcong WANG Dominic PAPINEAU Hongmei WANG Xuan QIU Genming LUO Zongmin ZHU Fengping WANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第1期208-221,共14页
The origin of sedimentary dolomite has become a long-standing problem in the Earth Sciences.Some carbonate minerals like ankerite have the same crystal structure as dolomite,hence their genesis may provide clues to he... The origin of sedimentary dolomite has become a long-standing problem in the Earth Sciences.Some carbonate minerals like ankerite have the same crystal structure as dolomite,hence their genesis may provide clues to help solving the dolomite problem.The purpose of this study was to probe whether microbial activity can be involved in the formation of ankerite.Bio-carbonation experiments associated with microbial iron reduction were performed in batch systems with various concentrations of Ca^(2+)(0–20 mmol/L),with a marine iron-reducing bacterium Shewanella piezotolerans WP3 as the reaction mediator,and with lactate and ferrihydrite as the respective electron donor and acceptor.Our biomineralization data showed that Ca-amendments expedited microbially-mediated ferrihydrite reduction by enhancing the adhesion between WP3 cells and ferrihydrite particles.After bioreduction,siderite occurred as the principal secondary mineral in the Ca-free systems.Instead,Ca-Fe carbonates were formed when Ca^(2+)ions were present.The CaCO_(3) content of microbially-induced Ca-Fe carbonates was positively correlated with the initial Ca2+concentration.The Ca-Fe carbonate phase produced in the 20 mmol/L Ca-amended biosystems had a chemical formula of Ca_(0.8)Fe_(1.2)(CO_(3))_(2),which is close to the theoretical composition of ankerite.This ankeritelike phase was nanometric in size and spherical,Ca-Fe disordered,and structurally defective.Our simulated diagenesis experiments further demonstrated that the resulting ankerite-like phase could be converted into ordered ankerite under hydrothermal conditions.We introduced the term“proto-ankerite”to define the Ca-Fe phases that possess near-ankerite stoichiometry but disordered cation arrangement.On the basis of the present study,we proposed herein that microbial activity is an important contributor to the genesis of sedimentary ankerite by providing the metastable Ca-Fe carbonate precursors. 展开更多
关键词 ANKERITE Proto-ankerite Microbial iron reduction Dolomite problem mineral transformation
原文传递
Influences of LaCl3 on the mineral phase transformation during osteoblast mineralization in vitro 被引量:1
12
作者 Caixia Yu Jiao Gong +3 位作者 Fu-ling Yin Jian Huang Tian-lan Zhang Kui Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第1期88-96,共9页
Rat calvarial osteoblasts were treated with lanthanum chloride(LaCl3) to explore its effect on the mineral crystalline phase during the process of osteoblast calcification in uitro.The results confirmed that La was ... Rat calvarial osteoblasts were treated with lanthanum chloride(LaCl3) to explore its effect on the mineral crystalline phase during the process of osteoblast calcification in uitro.The results confirmed that La was readily deposited in the mineral component of the matrix.Employing high-resolution transmission electron microscopy and Fourier transform infrared microspectroscopy techniques,we demonstrated that features comparable to dicalcium phosphate dihydrate(DCPD) and octacalcium phosphate,and hydroxyapatite(HAP) were detected in the mineral phases in uitro.Particularly,LaCl3 treatment retarded conversion from DCPD-like phase into HAP during mineralization.In addition,La was introduced in DCPD powder during wet chemical synthesis.When compared with that of La-free DCPD,the dissolution rate of La-incorporated DCPD was lower,thereby leading to a delayed DCPD-to-HAP phase transformation.Thus,it can be concluded that LaCl3 treatment influences the kinetics of inorganic phase transition by decreasing the dissolution rate of DCPD. 展开更多
关键词 Lanthanum Dicalcium phosphate dehydrate Transformation Osteoblasts mineralization
原文传递
Clay mineral formation and transformation in non-marine environments and implications for Early Cretaceous palaeoclimatic evolution:The Weald Basin,Southeast England
13
作者 Oladapo O.Akinlotan Ogechukwu A.Moghalu +6 位作者 Stuart J.Hatter Sunday Okunuwadje Lorna Anquilano Uche Onwukwe Safiyeh Haghani Okwudiri A.Anyiam Byami A.Jolly 《Journal of Palaeogeography》 SCIE CSCD 2022年第3期387-409,共23页
Analyses of clay minerals within the Early Cretaceous Weald Basin,Southeast England reveal kaolinite,illite and chlorite as the main detrital clay minerals while glauconite and smectite are subordinates.A kaolinite-ri... Analyses of clay minerals within the Early Cretaceous Weald Basin,Southeast England reveal kaolinite,illite and chlorite as the main detrital clay minerals while glauconite and smectite are subordinates.A kaolinite-rich assemblage which characterized the sand-dominated Ashdown and Tunbridge Wells Sand formations and an illite-dominated assemblage associated mostly with the Wadhurst Clay and Weald Clay formations are recognized.Kaolinite was enriched in the Ashdown and Tunbridge Wells Sand formations during warm and humid climate with high precipitation that encouraged chemical weathering and leaching,while cold and dry conditions favoured the concentration of illite in the Wadhurst Clay and Weald Clay formations.Rainfall patterns associated with warm climate were drastically reduced during the drier climatic conditions.Most clay minerals are detrital in origin,with chlorite being more prominent than previously recognized.Contrary to previous studies and assumptions,this study revealed that authigenic clay minerals are present in the Hastings Beds,with vermiform and mica-replacive kaolinite being the most common,consistent with humid depositional environments.Isolated authigenic illite is also present,along with a chloritized grain,providing evidence for mesodiagenesis.The absence of dickite and occurrence of kaolinite,suggest that authigenic illite formed in relatively shallow burial conditions,indicating a maximum burial depth of2500 m-3000 m,about 1000 m deeper than previous estimates of 1500 m-2000 m.Authigenic clay minerals are absent in the Weald Clay Formation possibly because of hindered flow of meteoric water and limited growth space for authigenic minerals.This study is significant in:1)reinforcing multiple methods to facilitate a robust and balanced knowledge of formation and transformation of clay minerals;2)investigating detrital and authigenic clay mineral assemblages when assessing the palaeoenvironments of sedimentary basins. 展开更多
关键词 Clay minerals Clay mineral transformation PALAEOCLIMATE Early Cretaceous Weald Basin WEALDEN Southeast England
原文传递
Effect of oil shale semi-coke on deposit mineralogy and morphology in the flue path of a CFB burning Zhundong lignite
14
作者 Zhuo LIU Jianbo LI +3 位作者 Mingming ZHU Xiaofeng LU Zhezi ZHANG Dongke ZHANG 《Frontiers in Energy》 SCIE CSCD 2021年第1期26-37,共12页
The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%... The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%or 20 wt%SC was added to ZD,which were then combusted in the CFB furnace at 950℃.Two probes with vertical and horizontal orientations were installed in the flue duct to simulate ash deposition.Both windward and leeward ash deposits on probes(P_(1)W,P_(1)L,P_(2)W and P_(2)L)were analyzed by using a scanning electron microscopy with energy dispersive X-ray(SEM-EDX),X-ray diffraction(XRD),an inductively coupled plasma optical emission spectrometry ICP-OES,and a particle size analyzer.When ZD was burned alone,the P1W deposit was comprised of agglomerates(<30µm)enriched in CaSO_(4)and Na_(2)SiO_(3),incurring significant sintering.The P1L and P2W deposits,however,were of both discrete and agglomerated particles in similar mineral phases but with coarser sizes.The P_(2)L deposit was mainly fine ash particles where Na_(2)SiO_(3)and Na_(2)SO_(4)were absent.As SC was added,the agglomerates in both P1W and P1L decreased.Moreover,SiO_(2)and Ca/Na aluminosilicates dominated the mineral phases whereas Na_(2)SiO_(3)and Na_(2)SO_(4)disappeared,showing a decrease in deposit stickiness.Likewise,the P2W deposit was found less spread on the probe,decreasing its deposition propensity.Na-bearing minerals turned into(Na,K)(Si_(3)Al)O_(8)and(Ca,Na)(Si,Al)4O8 in the P_(2)W deposit.Moreover,Na in the deposits decreased from 32 mg/g to less than 15 mg/g as SC presented.The addition of SC would therefore help alleviate the propensity of ash deposition in the flue path in the CFB combustion of ZD. 展开更多
关键词 ash deposition circulating fluidized bed(CFB) mineral transformation oil shale semi-coke(SC) Zhundong lignite(ZD)
原文传递
Geochemistry of Pore Water and Associated Diagenetic Reactions in the Diapiric Area of Yinggehai Basin, Northwestern South China Sea 被引量:6
15
作者 Tao Jiang Xinong Xie +2 位作者 Hui Chen Zhenfeng Wang Xushen Li 《Journal of Earth Science》 SCIE CAS CSCD 2015年第3期306-316,共11页
This study examined the geochemical features of pore water in the diapiric area of the Yinggehai Basin, northwestern South China Sea, and illuminated the origin and evolution of basin fluids. Pore water with low salin... This study examined the geochemical features of pore water in the diapiric area of the Yinggehai Basin, northwestern South China Sea, and illuminated the origin and evolution of basin fluids. Pore water with low salinity occurs in marine sediments in the diapiric area even without meteoric water infiltration. The presence of low-salinity water within deep, overpressured compartments is assumed to be due to smectite-illite transformation. Howerver, in shallow portions(less than 2 000 m) of diapiric areas with normal pressure, pore water has a much wider variation and much lower salinity than that in the overpressured intervals. Its total dissolved solid(TDS) content is ~5 336 to 35 939 mg/L. Moreover, smectite and chlorite content sharply decreases as kaolinite and illite content increase in shallower intervals. The geochemical variation of pore water in diapiric structures indicates the expulsion of low-salinity, overpressured fluids along vertical faults. Strong injection of hot fluids from deep overpressured sediments results in rapid clay mineral transformation in shallow reservoirs. Consequently, fluid mixing due to fluid expulsion from deeper overpressured deposits leads to variation in salinity and ionic composition as well as some diagenetic reactions. This includes transformation of clay minerals caused by the higher temperatur of deeper hot fluids, e.g., the transfromation of smectite to illite and chlorite to kaolinite. Therefore, variations in salinity and ionic compositions in various pressured systems provide a clue to flow pathways and associated diagenetic reactions. 展开更多
关键词 pore water diagenetic reaction clay mineral transformation overpressured system Yinggehai Basin
原文传递
Innovative and sustainable approach for phytoremediation of mine tailings:a review 被引量:1
16
作者 Anita Punia 《Waste Disposal and Sustainable Energy》 2019年第3期169-176,共8页
A review is designed to innovate a sustainable solution for the treatment of mine tailings using bioremediation and phytore-mediation.It emphasizes on achieving the geochemical stability of tailings through the establ... A review is designed to innovate a sustainable solution for the treatment of mine tailings using bioremediation and phytore-mediation.It emphasizes on achieving the geochemical stability of tailings through the establishment of microbes or plants.It highlights the gaps in achieving the geochemical stability of tailings.Lack of nutrients and low pH discourage the survival of microorganisms and the growth of plants on tailings.Treatment of tailings with agricultural waste(wheat and mustard stalks)would nourish tailings which promote the growth of microorganism and plants.Application of agricultural waste in remediation process is cost-effective.The role of microorganisms such as cyanobacteria,fungi,and algae are well known for mineralogical transformation.Microorganism converts unavailable fraction of nutrient into available form and important initiative to drive tailings towards natural soil.It would support the growth of plants on tailings to achieve successful phy-toremediation.Biofuel generation from tailings through high lipid and protein producing plants is important for sustainable development.Phytoremediation will reduce the environmental impact caused by mine tailings.For phytoremediation,use of biofuel producing plants,i.e.,Jatropha curcus and Brassica juncea,is recommended. 展开更多
关键词 Mine tailings mineral transformation Geochemical stability PHYTOREMEDIATION
原文传递
Shale pore characteristics of Shahejie Formation: Implication for pore evolution of shale oil reservoirs in Dongying sag, north China 被引量:2
17
作者 Shun Zhang Huimin Liu +7 位作者 Min Wang Xinjin Liu Huilai Liu Youshu Bao Weiqing Wang Runze Li Xin Luo Zhengwei Fang 《Petroleum Research》 2019年第2期113-124,共12页
The pore characteristics of shale reservoirs in the lower submember of Member 3 to upper submember of Member 4 of Shahejie Formation in Dongying sag are analyzed,influences of mineral content and organic matter conten... The pore characteristics of shale reservoirs in the lower submember of Member 3 to upper submember of Member 4 of Shahejie Formation in Dongying sag are analyzed,influences of mineral content and organic matter content on porosity and pore size are also investigated,and through the diagenetic thermal simulation experiment,the main pore evolution is further discussed.The results show that the pore structure of shale reservoirs is complex,the micron-nanometer pores can storage liquid hydrocarbons,and the free-phase crude oil is mainly distributed in intergranular dissolution pores of calcite,recrystallized intergranular pores,intergranular shrinkage fractures of clay mineral which have large pore size.Framework minerals and organic matter content directly influence porosity and pore size of shale reservoirs,relationship between porosity and content of felsic mineral as well as content of organic matter content is linear and positive,while relationship between content of carbonated mineral is negative.At the buried depth from 2500 to 3500 m,concentration of organic acid from hydrocarbon generation and expulsion of organic matter,increasing range of pressure coefficient,are well corresponding to highporosity intervals;pore formation in shale oil reservoirs are almost controlled by diagenetic evolution of clay minerals;framework storage spaces formed by carbonate grain crystals as well as intergranular and intergranular dissolution pores of carbonate increases porosity of shale oil reservoirs;local increase of porosity at the depth of 3500e3800 m is mainly caused by coupling of hydrocarbon-generating overpressure and dissolution,and size,distribution and connectivity of pores are enhanced obviously. 展开更多
关键词 Shale oil Pore and fracture DIAGENESIS Clay mineral transformation Dissolution RECRYSTALLIZATION Hydrocarbon-generation and acid expulsion PALEOGENE Dongying sag
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部